...
首页> 外文期刊>Mechanical Engineering Journal >Dislocation-based constitutive model of crystal plasticity for the size effect of single crystalline micropillar samples
【24h】

Dislocation-based constitutive model of crystal plasticity for the size effect of single crystalline micropillar samples

机译:基于位错的晶体可塑性本构模型对单晶微柱试样尺寸影响

获取原文

摘要

In this study, based on the Orowan equation and the principle of Bergstrom dislocation evolution, the plastic mechanical response of single crystalline micropillars is investigated by considering dislocation evolution. According to the single-arm source model, a physically revised Peirce-Asaro-Needleman (PAN) hardening model is proposed that can describe size-dependent hardening flow. The dislocation evolution parameters greatly affect the size-dependent plastic behavior of the single crystalline micropillars. Linking to the crystal plasticity finite element (CPFE) method, a physical plastic constitutive model with the framework of the CPFE method is proposed to solve the size-dependent boundary value problem. Compared with the results based on the original PAN hardening model, the proposed constitutive model can provide mechanical responses in different sizes, depending on the shear strain in each slip plane. If the non-friction condition between the rigid punch and the top surface of the pillar under uniaxial compression is considered, the results show that the shear band of the pillar mainly results from shear deformation on the slip plane with the maximum Schmid factor. Otherwise, the actual shear band deformation of the micropillars is complicated and combined with the other slip planes, that is, a multislip system. The results also indicate that friction affects size-dependent hardening.
机译:本研究基于Orowan方程和Bergstrom位错演化的原理,通过考虑位错演化研究了单晶微柱的塑性力学响应。根据单臂源模型,提出了一种物理修改的Peirce-Asaro-Needleman(PAN)硬化模型,该模型可以描述尺寸依赖的硬化流。位错演化参数极大地影响了单晶微柱的尺寸依赖性塑性行为。结合晶体可塑性有限元(CPFE)方法,提出了一种以CPFE方法为框架的物理塑性本构模型,以解决尺寸相关的边值问题。与基于原始PAN硬化模型的结果相比,所提出的本构模型可以提供不同大小的机械响应,具体取决于每个滑移面上的剪切应变。如果考虑单轴压缩下刚性冲头与立柱顶面之间的非摩擦条件,则结果表明,立柱的剪切带主要是由具有最大施密特因子的滑移面上的剪切变形引起的。否则,微柱的实际剪切带变形将变得复杂,并与其他滑动面(即多滑动系统)结合在一起。结果还表明,摩擦会影响尺寸依赖性硬化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号