...
首页> 外文期刊>Frontiers in Systems Neuroscience >Ratat1: A Digital Rat Brain Stereotaxic Atlas Derived from High-Resolution MRI Images Scanned in Three Dimensions
【24h】

Ratat1: A Digital Rat Brain Stereotaxic Atlas Derived from High-Resolution MRI Images Scanned in Three Dimensions

机译:Ratat1:数字大鼠脑立体定位图谱,来自三维扫描的高分辨率MRI图像

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Introduction Numerous magnetic resonance images (MRI)-derived brain atlases are available online for multiple species ( Bakker et al., 2015 ). MRI-derived rat brain atlases have been produced for different purposes using different procedures. The largest number of atlases appear to have been derived for morphometric purposes, e.g., white matter – gray matter segmentation ( Valdes-Hernandez et al., 2011 ), volumetric analysis of major structures ( Papp et al., 2014 ), developmental dynamics ( Calabrese et al., 2013 ). Published rat atlases have drawn their data primarily from albino strains, i.e., Wistar or Sprague Dawley. The present MRI atlas, to our knowledge, is the first available for adult Long-Evans rats, a pigmented strain widely used in behavioral and perceptual research. Some atlases have taken a nomothetic approach, that is to say deriving average templates from groups of animals, e.g. ( Valdes-Hernandez et al., 2011 ) while others have taken an idiographic approach, using data derived from a single exemplar, e.g. ( Papp et al., 2014 ). The nomothetic approach attempts to portray features of a population-average brain, but does so at the risk of statistically blurring small or variable features. The idiographic approach, when combined with high resolution scans, captures small features without statistical blurring, but does so at the risk of including anomalous features. The present atlas was derived from two selected exemplars, thus taking an idiographic approach. In addition, a number of atlases, e.g. ( Papp et al., 2014 ), link or index their images to the widely used reference system established by Paxinos and Watson (1998) (hereafter P&W). This enables users to take advantage of the superior structural detail provided by stained histological sections, and to adopt, if they wish, the widely used P&W coordinate system. An early rat MRI atlas, no longer available online ( Schweinhardt et al., 2003 ), analytically morphed their MRI images to P&W image space using an affine transformation anchored to prominent brain landmarks. From their published examples, line drawings derived from the transformed images were portrayed on a P&W coordinate grid (e.g., Figure 2 ), but the actual MRI images were not (e.g., Figure 3 ) ( Schweinhardt et al., 2003 ). The present atlas did not affine transform the MR images to P&W image space, but rather directly imaged P&W skull landmarks, Bregma and Lambda (reference points visible to a surgeon) and used these to anchor the MR images to the P&W coordinate system via a superimposed grid. The Papp et al. (2014) atlas imaged Bregma and Lambda, but did not project either the reference points or coordinates onto individual brain scans. Animal MRI atlases vary considerably in their method of subject preparation, as well as acquisition parameters affecting image quality, e.g., magnet field strength. Images have been obtained from live subjects ( Valdes-Hernandez et al., 2011 ), ex vivo subjects (as in the present atlas), and preserved tissue ( Papp et al., 2014 ). Each method has advantages and disadvantages. In vivo acquisition obviously captures the brain in its native state, however, movement artifact may affect image quality and anesthesia tolerance limits total acquisition time (which also limits image resolution). Images obtained from preserved tissue eliminate the issues of movement artifact and acquisition time but bring with it structural changes from preservative perfusion. The ex vivo method, used for the present atlas, maintains in situ structure, but acquisition time is constrained by post-mortem tissue degradation (approximately 10 h in the present environment). Higher magnet field strength brings with it improved spatial resolution, but also imaging artifacts that accrue in proportion to field strength (discussed below). Objective To derive a high resolution digital brain atlas of in situ MR images from adult Long Evans rats suitable for use in stereotaxic surgery applications. Using an ultra-high resolution scanner, brain images were acquired ex vivo in a near natural state. Those images, particularly when combined with images derived from conventional histological sections, can be used to determine the coordinates of stereotaxic surgical targets with improved accuracy. Additional objectives were to depict brain images in three viewing planes indexed to the skull surface as well as to the skull landmarks Bregma and Lambda. A further objective was to present the atlas in a simple widely used file format (.pdf) not requiring specialized software for viewing, copying, or unpacking. Subjects Nine adult Long Evans (Harlan, Indianapolis, IN, USA) male rats, wt. 350–550 g were imaged. The image sets of two animals were judged to be of superior quality and were used as exemplars to compose the atlas. Their images were free of anatomical anomalies and imaging distortions. These animals were 135–136 days of age when imaged, and weighed 506 and 510 g. The experimental
机译:简介可在线获得多种物种的许多磁共振图像(MRI)衍生的脑图集(Bakker et al。,2015)。 MRI衍生的大鼠脑图谱已使用不同的程序用于不同目的。地图集的数量最多似乎是出于形态计量的目的,例如白质-灰质分割(Valdes-Hernandez等,2011),主要结构的体积分析(Papp等,2014),发育动力学( Calabrese等,2013)。已发表的大鼠图集主要是从白化病毒株(即Wistar或Sprague Dawley)中提取数据的。据我们所知,目前的MRI图谱是成年的Long-Evans大鼠的第一个可用的图谱,这是一种在行为和知觉研究中广泛使用的有色菌株。一些地图集采用了通用方法,也就是说,从动物组(例如动物)中获取平均模板。 (Valdes-Hernandez等人,2011年),而其他人则采用了一种独特的方法,即使用来自单个样本(例如(Papp等,2014)。惯常方法试图描绘人口平均大脑的特征,但是这样做有统计学上模糊小的或可变特征的风险。具体方法与高分辨率扫描结合使用时,可以捕获小的特征而不会造成统计模糊,但是这样做可能会包含异常特征。本地图集来自两个选定的范例,因此采用了独特的方法。此外,还有一些地图集,例如(Papp等,2014),将其图像链接或索引到Paxinos和Watson(1998)建立的广泛使用的参考系统(以下简称P&W)。这使用户能够利用染色的组织学切片提供的出色的结构细节,并根据需要采用广泛使用的P&W坐标系。早期的MRI大鼠图谱不再在线可用(Schweinhardt等,2003),它使用锚定在重要脑部标志上的仿射变换将MRI图像分析变形为P&W图像空间。从他们发布的示例中,从变换后的图像得出的线条图描绘在P&W坐标网格上(例如图2),但实际的MRI图像却没有(例如图3)(Schweinhardt等人,2003年)。目前的地图集并未将MR图像仿射转换为P&W图像空间,而是直接成像了P&W头骨地标Bregma和Lambda(外科医生可见的参考点),并使用这些图像通过叠加将MR图像锚定到P&W坐标系格。 Papp等。 (2014)地图集为Bregma和Lambda成像,但没有将参考点或坐标投影到单独的脑部扫描上。动物MRI图集的受试者制备方法以及影响图像质量的采集参数(例如磁场强度)差异很大。已从活体受试者(Valdes-Hernandez等,2011),离体受试者(如本地图集)和保存的组织(Papp等,2014)获得图像。每种方法都有优点和缺点。体内采集显然会以其原始状态捕获大脑,但是,运动伪影可能会影响图像质量,而麻醉耐受性会限制总采集时间(这也限制了图像分辨率)。从保存的组织获得的图像消除了运动伪影和采集时间的问题,但随之带来了防腐剂灌注引起的结构变化。用于本地图集的离体方法可保持原位结构,但采集时间受验尸组织降解的限制(在当前环境中约为10小时)。更高的磁场强度带来了更好的空间分辨率,但是成像伪影却与场强成正比(如下所述)。目的从适合于立体定向手术应用的成年Long Evans成年大鼠中获得高分辨率的原位MR图像数字脑图集。使用超高分辨率扫描仪,以接近自然的状态离体采集了大脑图像。那些图像,特别是当与从常规组织学切片获得的图像组合时,可用于以更高的精度确定立体定位外科手术目标的坐标。另一个目标是在三个与头骨表面以及头骨地标Bregma和Lambda索引的观察平面中描绘大脑图像。另一个目标是以一种简单且广泛使用的文件格式(.pdf)形式显示地图集,而无需使用专用软件进行查看,复制或解压缩。受试者九只成年的长埃文斯(美国印第安纳州印第安纳波利斯的哈兰)雄性大鼠,体重。拍摄了350–550 g。两只动物的图像集被认为具有较高的质量,并被用作构成地图集的范例。他们的图像没有解剖异常和成像失真。这些动物在成像时年龄为135–136天,分别重506和510 g。实验性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号