首页> 外文期刊>Frontiers in Systems Neuroscience >GABAergic circuits underpin valuative processing
【24h】

GABAergic circuits underpin valuative processing

机译:GABA能回路支持评估过程

获取原文
       

摘要

Affect is the fundamental neuropsychological state combining value- and arousal-related processes underpinning emotion and mood. A major goal of the emerging field of affective science is to explain the mechanisms of valuation within the brain. A core network of brain activity is seen across mammals in response to appetitive or aversive stimuli, and appears to be largely independent of stimulus modality (Bissonette et al., 2014 ; Hayes et al., 2014a ). However, the underlying mechanisms of valuation (i.e., appetitive- and aversive-related brain activity) are unclear, and there is particularly little information about how these two valuative networks interact. One candidate which is likely central to the activity of both networks is the neurotransmitter γ-aminobutyric acid (GABA). Here, I briefly discuss some of the evidence pointing to GABA as a central player in mediating appetitive and aversive activity throughout the brain. The broader implication is that the role of GABA in valuative processing may be at the heart of affective regulation, and thus also important for a wide variety of psychological phenomena, from emotion (Stan et al., 2014 ) and impulsivity (Hayes et al., 2014b ) to sense of self (Wiebking et al., 2014a , b ). Keys to understanding GABA circuitry An exploration of GABA in appetitive and aversive behavior began following its identification in the mammalian brain (Roberts and Frankel, 1950 ). Although central dopamine was discovered seven years later, many barriers to GABA-related research—including its relative ubiquity throughout the brain, the robust effects of GABAergic drugs administered systemically (e.g., which can easily lead to seizures or immobility), and little knowledge about GABAergic neurocircuitry—has led to a much greater understanding of dopamine in this context (Iversen and Iversen, 2007 ). Early advances in rodents were nonetheless made delineating key roles for GABA in consummatory behavior, stress, and anxiety (Kelly et al., 1977 ; Biggio et al., 1990 ). Studies such as these revealed that beyond dopamine, GABA was involved in mediating motivated behaviors in widespread, but regionally-selective ways (Kelly et al., 1977 ), and that dynamic cortical and subcortical changes to GABAergic microcircuits were involved (Biggio et al., 1990 ). Improved mapping of the extensive brain GABAergic circuits (illustrated in Figure 1 ), coupled with technological advances in detection and manipulation, have partly driven the recent focus of the role of GABA, and its sister excitatory neurotransmitter glutamate, in value-related processing. Moreover, structural advances have continued steadily, from the identification of key GABAergic hubs, such as the basal ganglia and nucleus accumbens (Groenewegen and Russchen, 1984 ), to more recent elaborations on the nature of inter- and intra-regional short and long-range GABAergic connections (Caputi et al., 2013 ). GABA circuits are uniquely situated as both local communicators and whole-brain integrators, given their dynamic control over excitatory and inhibitory signal conduction through axo-dendritic and astrocytic synapses (Frola et al., 2013 ) and their role in broader oscillatory and synchronistic activities (Melzer et al., 2012 ). Figure 1 Simplified schematic diagram of GABAergic circuitry underlying valuative processing . Inhibitory connections, mainly GABAergic, are indicated by black arrows; excitatory connections, which are glutamatergic unless otherwise indicated, are indicated by green arrows. Brain regions are grouped by neocortex (blue), basal ganglia (brown), thalamus (orange), midbrain/mesencephalon (gray), amygdala (purple) and brainstem (green) for illustrative purposes. Adapted from Dalley et al. ( 2011 ), Squire et al. ( 2012 ), and Nieh et al. ( 2013 ). GABAergic interneurons, particularly parvalbumin-containing, are fundamental drivers of cortical oscillations, which emerging research suggests may be a fundamental context-dependent mechanism for intra- and inter-regional communication (Sohal, 2012 ; Jadi and Sejnowski, 2015 ). For instance, beyond the hippocampus and select regions of the neocortex, where these oscillations are better studied, there is also evidence for GABA-driven oscillatory synchronization within the striatum (Sharott et al., 2009 )—a hub region connecting the cortex to the basal ganglia and heavily involved in motivation and valuative processing. Moreover, there is evidence that GABA cells are necessary for sustained reward-related signaling, as noted in a study of reversal learning in mice with decreased levels of prefrontal cortical GABAergic interneurons (Bissonette et al., 2015 ). Going forward, I briefly discuss a sample of recent studies which support the fundamental role of GABA in valuative processing and highlight future directions which will likely contribute to advances in this area. GABAergic microcircuits regulate valuative networks The present focus on GABA is not intended to ignore
机译:情感是一种基本的神经心理状态,结合了与价值和唤醒相关的过程,从而支撑了情绪和情绪。情感科学新兴领域的一个主要目标是解释大脑内评估的机制。在哺乳动物中,对食性或厌恶性刺激做出反应时,大脑活动的核心网络被发现,并且似乎在很大程度上与刺激方式无关(Bissonette等,2014; Hayes等,2014a)。但是,评估的基本机制(即与竞争性和厌恶性有关的大脑活动)尚不清楚,并且关于这两个评估网络如何相互作用的信息特别少。神经递质γ-氨基丁酸(GABA)可能是这两个网络活动的核心。在这里,我简要讨论一些证据,这些证据表明GABA是介导整个大脑的食欲和厌恶活动的主要参与者。更广泛的含义是,GABA在评估过程中的作用可能是情感调节的核心,因此对于情感(Stan等人,2014)和冲动性(Hayes等人)的各种心理现象也很重要。 ,2014b))来感受自我(Wiebking等,2014a,b)。理解GABA电路的关键在哺乳动物大脑中识别出GABA之后,就开始了对GABA的食欲和厌恶行为的探索(Roberts和Frankel,1950)。尽管七年后发现了中枢多巴胺,但是与GABA相关的研究仍然存在许多障碍,包括其在整个大脑中的相对普遍性,系统施用GABA药的强大作用(例如,很容易导致癫痫发作或无法动弹),以及对在这种情况下,GABA能神经回路使人们对多巴胺有了更多的了解(Iversen和Iversen,2007年)。尽管如此,啮齿类动物的早期进展还是描述了GABA在消费行为,压力和焦虑中的关键作用(Kelly等,1977; Biggio等,1990)。诸如此类的研究表明,除了多巴胺之外,GABA还以广泛但区域选择性的方式参与介导动机行为(Kelly等,1977),并且涉及GABA能微电路的动态皮层和皮层下变化(Biggio等。 (1990)。广泛的大脑GABA能回路的改进映射(如图1所示),加上检测和操纵技术的进步,部分推动了GABA及其姐妹兴奋性神经递质谷氨酸在价值相关加工中的作用。此外,从确定关键的GABA能枢纽,如基底神经节和伏隔核(Groenewegen和Russchen,1984年),到最近对区域间和区域内短时和长时性的详细阐述,结构上的进步一直在稳步进行。范围内的GABA能连接(Caputi等人,2013年)。由于GABA回路通过轴突,树突和星形胶质突触来动态控制兴奋性和抑制性信号传导(Frola et al。,2013)以及它们在更广泛的振荡和同步活动中的作用(GABA回路是本地传播者和全脑积分者中的唯一者)梅尔泽(Melzer)等人,2012年)。图1是评估处理基础的GABA能电路的简化示意图。黑色箭头表示抑制性连接,主要是GABA能的。除非另有说明,否则谷氨酸能兴奋性连接由绿色箭头指示。为了说明目的,将脑区域按新皮层(蓝色),基底神经节(棕色),丘脑(橙色),中脑/中脑(灰色),杏仁核(紫色)和脑干(绿色)分组。改编自Dalley等。 (2011),Squire等。 (2012)和Nieh等。 (2013)。 GABA能的神经元,尤其是含小白蛋白的神经元,是皮质振荡的基本驱动力,新兴研究表明这可能是与区域内和区域间交流的基本上下文相关机制(Sohal,2012; Jadi和Sejnowski,2015)。例如,在海马和新皮层的特定区域(这些振荡得到了更好的研究)之外,还有证据表明纹状体内部由GABA驱动的振荡同步(Sharott等人,2009年)–连接皮层和皮层的枢纽区域。基底神经节,大量参与动机和评估过程。此外,有证据表明,如在前额叶皮质GABA能性中间神经元水平降低的小鼠中进行的逆向学习研究中指出的那样,GABA细胞对于持续的奖赏相关信号是必需的(Bissonette等,2015)。展望未来,我将简要讨论一些近期研究的样本,这些样本支持GABA在评估处理中的基本作用,并着重指出将来的方向,这可能会推动该领域的发展。 GABA能微电路调节评估网络目前对GABA的关注并非意在忽略

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号