首页> 外文期刊>Frontiers in Systems Neuroscience >Editorial: Self-Organization in the Nervous System
【24h】

Editorial: Self-Organization in the Nervous System

机译:社论:神经系统中的自我组织

获取原文
       

摘要

“Self-organization is the spontaneous—often seemingly purposeful—formation of spatial, temporal, spatiotemporal structures, or functions in systems composed of few or many components. In physics, chemistry and biology self-organization occurs in open systems driven away from thermal equilibrium” (Haken, Scholarpedia). The contributions in this special issue aim to elucidate the role of self-organization in shaping the cognitive processes in the course of development and throughout evolution, or “from paramecia to Einstein” ( Torday and Miller ). The central question is: what self-organizing mechanisms in the human nervous system are common to all forms of life, and what mechanisms (if any) are unique to the human species? Over the last several decades, the problem of self-organization has been at the forefront of research in biological and machine intelligence (Kohonen, 1989 ; Kauffman, 1993 ; Pribram, 1994 , 1996 , 1998 ; Kelso, 1997 ; Camazine et al., 2003 ; Zanette et al., 2004 ; Haken, 2010 , 2012 , and others). The articles collected in this issue present recent findings (and ideas) from diverse perspectives and address different facets of the problem. Two features of this collection might be of particular interest to the reader: (i) the scope of discussion is broad, stretching from general thermodynamic and information-theoretic principles to the expression of these principles in human cognition, consciousness and understanding and (ii) many of the ideas speak to a unifying perspective outlined below. In what follows, we will preview the collection of papers in this special issue and frame them in terms of a unified approach to self organization—leaving the reader to judge the degree to which subsequent articles are consistent with or contradict this framework. Living organisms must regulate flows of energy and matter through their boundary surfaces to underwrite their survival. Cognitive development is the product of progressive fine-tuning (optimization) of regulatory mechanisms, under the dual criteria of minimizing surprise (Friston, 2010 ; Sengupta et al., 2013 , 2016 ; Sengupta and Friston, 2017 ) and maximizing thermodynamic efficiency (Yufik, 2002 , 2013 ). The former implies reducing the likelihood of encountering conditions impervious to regulation (e.g., inability to block inflows of destructive substances); the latter implies maintaining net energy intakes above some survival thresholds. Energy is expended in regulatory processes formed in the course of self-organization and predicated on lowering thermodynamic entropy “on the inside” and transporting excessive entropy (heat) “to the outside.” Efficient regulation requires mechanisms that necessarily incorporate models of the system and its relation to environment (Conant and Ashby, 1970 ). Primitive animals possess small repertoires of genetically fixed, rigid models, while—in more advanced animals—the repertoires are larger and their models become more flexible; i.e., amenable to experience-driven modifications. Both the evolutionary and experience-driven modifications are forms of statistical learning: models are sculpted by external feedback conveying statistical properties of the environment. Human learning mechanisms, although built on the foundation of statistical learning, depart radically from conventional (e.g., machine) learning: the implicit models become amenable to self-directed composition and modification based on interoceptive, as opposed (or in addition) to exteroceptive, feedback (Yufik, 1998 ). Interoceptive feedback underlies the feeling of grasp, or understanding that accompanies the organization of disparate “representations” into cohesive structures amenable to further operations (mental modeling). The work of mental modeling requires energy; consciousness is co-extensive with deliberate (attentive, focused) application of energy (“cognitive effort”) in carrying out that work. Learning with understanding departs from statistical (machine) learning in three ways: (i) mental models anticipate experiences, as opposed to be shaped by them (e.g., the theory of relativity originated in gedanken experiments); (ii) feedback conveys properties of implicit models (coherence, simplicity, validation opportunities the models afford, etc.) and (iii) manipulating (executing or inverting) models enables efficient exchange with the environment, under conditions with no precedents (and thus no learnable statistical representation) (Yufik, 2013 ). Regulation of this sort—based on statistical learning—faces a challenging complexity. As the number of regulated variables grows; energy demands can quickly become unsustainable. Using self-organization to implement the process of “understanding” (i.e., composing more general models) has the triple benefit of minimizing surprise, while averting complexity and advancing thermodynamic efficiency of regulatory processes into the vicinity of theoretical limits. Annila argues that the most funda
机译:“自我组织是空间,时间,时空结构或由很少或许多组件组成的系统中的功能的自发形成(通常看似有目的)。在物理学中,化学和生物学的自组织发生在远离热平衡的开放系统中”(Haken,Scholarpedia)。本期特刊的目的是阐明自组织在发展过程中以及整个进化过程中或“从paramecia到Einstein”(Torday和Miller)中在塑造认知过程中的作用。中心问题是:人类神经系统中哪些自组织机制是所有形式的生命所共有的,什么机制(如果有的话)是人类独有的?在过去的几十年中,自组织问题一直处于生物学和机器智能研究的最前沿(Kohonen,1989; Kauffman,1993; Pribram,1994,1996,1998; Kelso,1997; Camazine等, 2003年; Zanette等人,2004年; Haken,2010年,2012年等)。本期中收集的文章从不同的角度介绍了最近的发现(和观点),并解决了该问题的不同方面。读者可能会特别喜欢该集合的两个特征:(i)讨论的范围很广,从一般的热力学原理和信息理论原理延伸到这些原理在人类认知,意识和理解中的表达,以及(ii)许多想法代表了下面概述的统一观点。接下来,我们将预览本期特刊的论文集,并以统一的自我组织方法来设计它们的框架,使读者能够判断后续文章在何种程度上与该框架相符或相矛盾。生命有机体必须调节能量和物质通过其边界表面的流动,以维持其生存。认知发展是调节机制进行渐进式微调(优化)的产物,其前提是将意外最小化(Friston,2010; Sengupta等,2013,2016; Sengupta和Friston,2017)和最大化热力学效率(Yufik)。 ,2002年,2013年)。前者意味着减少遇到无法通过法规的条件的可能性(例如,无法阻止破坏性物质的流入);后者意味着将净能量摄入维持在某些生存阈值以上。能量在自组织过程中形成的调节过程中消耗,其依据是降低“内部”的热力学熵,并将“过量的”熵(热)“传输”到外部。有效的监管要求机制必须纳入系统模型及其与环境的关系(Conant和Ashby,1970)。原始动物拥有遗传固定的,刚性模型的小库,而在更高级的动物中,库更大,其模型变得更灵活。即适合于经验驱动的修改。进化和经验驱动的修改都是统计学习的形式:模型由传达环境统计属性的外部反馈雕刻而成。人类的学习机制虽然建立在统计学习的基础上,却与传统的(例如机器)学习大相径庭:隐式模型适合基于自我感知的自我指导的构成和修改,与(或除了)外部感知,反馈(Yufik,1998年)。感知间的反馈是将不同的“表示”组织成适合进一步操作(心理建模)的内聚结构所伴随的把握或理解的基础。心理模型的工作需要精力;在开展这项工作时,意识与故意(专注,专注)的能量运用(“认知努​​力”)共同延伸。具有理解力的学习在三种方式上不同于统计(机器)学习:(i)心理模型预见到经验,而不是由经验来塑造(例如,相对论起源于gedanken实验); (ii)反馈传达隐式模型的属性(一致性,简单性,模型提供的验证机会等),以及(iii)操纵(执行或反转)模型可以在没有先例的情况下(因此没有可学习的统计表示)(Yufik,2013年)。这种基于统计学习的监管面临着艰巨的挑战。随着调节变量数量的增加;能源需求很快就会变得不可持续。使用自组织来实现“理解”过程(即,组成更通用的模型)具有三大好处,即可以最大程度地减少意外,同时避免复杂性并将调节过程的热力学效率提高到理论极限附近。安妮拉认为,最基本的

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号