首页> 外文期刊>Materials >Time-Lapse Helical X-ray Computed Tomography (CT) Study of Tensile Fatigue Damage Formation in Composites for Wind Turbine Blades
【24h】

Time-Lapse Helical X-ray Computed Tomography (CT) Study of Tensile Fatigue Damage Formation in Composites for Wind Turbine Blades

机译:时空螺旋X射线计算机断层扫描(CT)研究风力涡轮机叶片复合材料中的拉伸疲劳损伤

获取原文
           

摘要

Understanding the fatigue damage mechanisms in composite materials is of great importance in the wind turbine industry because of the very large number of loading cycles rotor blades undergo during their service life. In this paper, the fatigue damage mechanisms of a non-crimp unidirectional (UD) glass fibre reinforced polymer (GFRP) used in wind turbine blades are characterised by time-lapse ex-situ helical X-ray computed tomography (CT) at different stages through its fatigue life. Our observations validate the hypothesis that off-axis cracking in secondary oriented fibre bundles, the so-called backing bundles, are directly related to fibre fractures in the UD bundles. Using helical X-ray CT we are able to follow the fatigue damage evolution in the composite over a length of 20 mm in the UD fibre direction using a voxel size of (2.75 μm) 3 . A staining approach was used to enhance the detectability of the narrow off-axis matrix and interface cracks, partly closed fibre fractures and thin longitudinal splits. Instead of being evenly distributed, fibre fractures in the UD bundles nucleate and propagate locally where backing bundles cross-over, or where stitching threads cross-over. In addition, UD fibre fractures can also be initiated by the presence of extensive debonding and longitudinal splitting, which were found to develop from debonding of the stitching threads near surface. The splits lower the lateral constraint of the originally closely packed UD fibres, which could potentially make the composite susceptible to compressive loads as well as the environment in service. The results here indicate that further research into the better design of the positioning of stitching threads, and backing fibre cross-over regions is required, as well as new approaches to control the positions of UD fibres.
机译:了解复合材料中的疲劳损伤机理在风力涡轮机行业中非常重要,因为转子叶片在使用寿命期间会经历大量的加载循环。在本文中,通过在不同阶段的延时异位螺旋X射线计算机断层扫描(CT)来表征用于风力涡轮机叶片的非卷曲单向(UD)玻璃纤维增​​强聚合物(GFRP)的疲劳损伤机理。通过其疲劳寿命。我们的观察结果证实了以下假设:次级取向纤维束(即所谓的背衬束)中的离轴开裂与UD束中的纤维断裂直接相关。使用螺旋X射线CT,我们能够使用(2.75μm)3的体素来跟踪UD纤维方向上长度为20 mm的复合材料中复合材料的疲劳损伤演变。染色方法用于增强窄离轴基体和界面裂纹,部分闭合的纤维断裂和薄的纵向裂缝的可检测性。 UD束中的纤维断裂不是均匀分布,而是成核并在背衬束交叉处或缝合线交叉处局部扩散。此外,UD纤维断裂也可以通过广泛的脱粘和纵向断裂而引发,这是由于缝合线在表面附近脱粘而形成的。裂缝降低了最初紧密堆积的UD纤维的横向约束,这可能会使复合材料容易受到压缩载荷以及使用环境的影响。此处的结果表明,需要对缝线的更好设计和背衬纤维交叉区域进行进一步研究,以及控制UD纤维位置的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号