首页> 外文期刊>Frontiers in Pharmacology >Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations
【24h】

Digging into Lipid Membrane Permeation for Cardiac Ion Channel Blocker d-Sotalol with All-Atom Simulations

机译:全原子模拟研究离子通道阻滞剂d-索他洛尔的脂质膜渗透

获取原文
       

摘要

Interactions of drug molecules with lipid membranes play crucial role in their accessibility of cellular targets and can be an important predictor of their therapeutic and safety profiles. Very little is known about spatial localization of various drugs in the lipid bilayers, their active form (ionization state) or translocation rates and therefore potency to bind to different sites in membrane proteins. All-atom molecular simulations may help to map drug partitioning kinetics and thermodynamics, thus providing in-depth assessment of drug lipophilicity. As a proof of principle, we evaluated extensively lipid membrane partitioning of d-sotalol, well-known blocker of a cardiac potassium channel K_(v)11.1 encoded by the hERG gene, with reported substantial proclivity for arrhythmogenesis. We developed the positively charged (cationic) and neutral d-sotalol models, compatible with the biomolecular CHARMM force field, and subjected them to all-atom molecular dynamics (MD) simulations of drug partitioning through hydrated lipid membranes, aiming to elucidate thermodynamics and kinetics of their translocation and thus putative propensities for hydrophobic and aqueous hERG access. We found that only a neutral form of d-sotalol accumulates in the membrane interior and can move across the bilayer within millisecond time scale, and can be relevant to a lipophilic channel access. The computed water-membrane partitioning coefficient for this form is in good agreement with experiment. There is a large energetic barrier for a cationic form of the drug, dominant in water, to cross the membrane, resulting in slow membrane translocation kinetics. However, this form of the drug can be important for an aqueous access pathway through the intracellular gate of hERG. This route will likely occur after a neutral form of a drug crosses the membrane and subsequently re-protonates. Our study serves to demonstrate a first step toward a framework for multi-scale in silico safety pharmacology, and identifies some of the challenges that lie therein.
机译:药物分子与脂质膜的相互作用在它们对细胞靶标的可及性中起关键作用,并且可以是其治疗和安全性概况的重要预测指标。关于脂质双层中各种药物的空间定位,其活性形式(电离状态)或易位率以及因此与膜蛋白中不同位点结合的能力了解甚少。全原子分子模拟可能有助于绘制药物分配动力学和热力学图谱,从而提供对药物亲脂性的深入评估。作为原理的证明,我们广泛评估了d-索他洛尔的脂质膜分区,d-索他洛尔是由hERG基因编码的心脏钾通道K_(v)11.1的众所周知的阻滞剂,据报道其心律失常的可能性很大。我们开发了与生物分子CHARMM力场兼容的带正电的(阳离子)和中性的d-索他洛尔模型,并对其进行了通过水合脂质膜分配药物的全原子分子动力学(MD)模拟,旨在阐明热力学和动力学它们的易位性,以及由此推定的疏水性和水性hERG通路的倾向。我们发现,仅中性形式的d-索他洛尔会在膜内部积聚,并且可以在毫秒时间内跨双层移动,并且可能与亲脂通道有关。该形式计算出的水膜分配系数与实验吻合良好。阳离子形式的药物(在水中占优势)对膜有很大的能量屏障,导致膜易位动力学变慢。但是,这种药物形式对于通过hERG细胞内门的水通道可能很重要。在药物的中性形式穿过膜并随后重新质子化之后,可能会发生这种途径。我们的研究旨在证明迈向多尺度计算机模拟安全药理学框架的第一步,并确定其中存在的一些挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号