...
首页> 外文期刊>Frontiers in Neuroinformatics >Exploring fMRI Results Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM
【24h】

Exploring fMRI Results Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM

机译:探索fMRI结果空间:AFNI,FSL和SPM中31种fMRI分析的变体

获取原文
           

摘要

Background Data sharing is becoming a priority in functional Magnetic Resonance Imaging (fMRI) research, but the lack of a standard format for shared data is an obstacle ( Poline et al., 2012 ; Poldrack and Gorgolewski, 2014 ). This is especially true for information about data provenance, including auxiliary information such as participant characteristics and task descriptions. The three most commonly used analysis software packages [AFNI~( 1 )( Cox, 1996 ), FSL~( 2 )( Jenkinson et al., 2012 ), and SPM~( 3 )( Penny et al., 2011 )] broadly conduct the same analysis, but differ in how fundamental concepts are described, and have a myriad of differences in the pre-processing and modeling steps. The practical consequence is that sharing analyzed data is further complicated by the idiosyncrasies of the particular software used. The Neuroimaging Data Model [NIDM~( 4 )( Keator et al., 2013 ; Maumet et al., 2016 )] is an initiative from the International Neuroinformatics Coordinating Facility (INCF~( 5 )) that addresses these practical barriers through the development of a standard format for neuroimaging data. Ultimately, NIDM will provide a standard format that can handle data that has been processed in any of the common software packages. In order to achieve this, the development of NIDM requires publicly available derived data that covers all the major use cases in the main software programs. The purpose of the current work was to produce a set of results of mass univariate fMRI analyses using the most common software packages: AFNI, FSL, and SPM [which between them cover 80% of published fMRI analyses ( Carp, 2012 )], utilizing publicly available data from OpenfMRI~( 6 )( Poldrack et al., 2013 ). The analyses (‘variants’) presented in this paper cover the most common options available in each software package at each analysis stage, from different Hemodynamic response function (HRF) basis functions through to group-level tests. The tests are arranged so that readers can compare the closest equivalent variants across software packages. In particular, these tests will be useful for comparing the results from default test settings across software packages. While this collection of analyses was chosen for their relevance to the NIDM project, it also addresses a gap in the literature where publicly available processed data is concerned. Specifically, while there are published comparisons of different processing pipelines, the data are not publicly available ( Carp, 2012 ) or are for resting state fMRI only ( Bellec et al., 2016 ). Others have shared raw data but lack analysis results ( Hanke et al., 2014 ) or do not include comparisons across multiple software packages [e.g., analyses in the The Human Connectome Project~( 7 )( Van Essen et al., 2013 ) are performed with FSL only]. Shared raw data is a useful resource, but we argue that shared processed data is also important, both to provide a basis of cross-software comparisons and to create a benchmark for testing of automated provenance software. The dataset presented in this paper is a contribution toward this omission in the literature. Methods Data Source Data were downloaded from OpenfMRI’s BIDS-compliant ds000011 dataset~( 8 )between 09/02/2016 and 15/02/2016. A full description of the paradigm is in the original paper ( Foerde et al., 2006 ). The first task was a training exercise in which participants counted high tones in a series of high-pitched and low-pitched tones (‘tone counting’ condition), and then selected a number that represented the number of high tones (the ‘tone counting probe’ condition, referred to as ‘probe’ hereafter). We modeled both the tone counting and probe conditions, using tone counting as the effect of interest ([1 0] contrast with implicit baseline). Single-subject tests were conducted with data from subject 01 only, while group-level tests were run with all 14 subjects. Analyses were conducted in AFNI, SPM12, and FSL. In AFNI, single-subject variants were conducted using the uber_subject.py interface, which generates and runs two scripts: cmd.ap.sub_001 and proc.sub_001. Other variants did not require changing options in the interface, so were run directly from the command line, using a copy of the default cmd.ap.sub_001 script. Scripts for group-level tests were created manually. For each of the SPM variants, a batch.m file conducting the full analysis (using dependencies across processing steps) was created and run with the Batch Editor GUI. FSL-specific variants were modeled using FSL’s FMRI Expert Analysis Tool~( 9 ), where a.fsf file for the complete analysis was created using the FEAT GUI. Pre-defined Settings In this section, settings held constant over variants (e.g., drift modeling) are described for each of the packages. These pre-defined settings (including pre-processing) were identical for each variant. Pre-processing As slice-time information was not available for this study, this step was not considered in the
机译:背景数据共享已成为功能磁共振成像(fMRI)研究中的优先事项,但缺乏共享数据的标准格式是一个障碍(Poline等,2012; Poldrack和Gorgolewski,2014)。对于有关数据来源的信息尤其如此,包括辅助信息,例如参与者特征和任务描述。广泛使用的三种分析软件包[AFNI〜(1)(Cox,1996),FSL〜(2)(Jenkinson等,2012)和SPM〜(3)(Penny等,2011)]进行相同的分析,但是基本概念的描述方式有所不同,并且在预处理和建模步骤方面存在众多差异。实际的结果是,所使用的特定软件的特性使共​​享分析数据更加复杂。神经影像数据模型[NIDM〜(4)(Keator等,2013; Maumet等,2016)]是国际神经信息学协调机构(INCF〜(5))提出的一项倡议,旨在解决开发过程中的这些实际障碍。神经影像数据的标准格式。最终,NIDM将提供一种标准格式,可以处理任何通用软件包中已处理的数据。为了实现这一点,NIDM的开发需要公开可用的派生数据,这些数据涵盖主要软件程序中的所有主要用例。当前工作的目的是使用最常用的软件包AFNI,FSL和SPM [在它们之间涵盖已发表的fMRI分析的80%(Carp,2012)]产生一组质量单变量fMRI分析的结果。公开数据来自OpenfMRI〜(6)(Poldrack et al。,2013)。本文介绍的分析(“变量”)涵盖了每个分析阶段每个软件包中最常用的选项,从不同的血液动力学响应函数(HRF)基本函数到小组级测试。安排了测试,以便读者可以比较软件包之间最接近的等效变体。尤其是,这些测试对于比较软件包之间默认测试设置的结果很有用。选择这些分析集合是因为​​它们与NIDM项目相关,但它也解决了与公开处理的数据有关的文献空白。具体而言,尽管已发布了不同处理管道的比较结果,但这些数据并非公开可用(Carp,2012年),或仅用于静态fMRI(Bellec等人,2016年)。其他人共享原始数据,但缺乏分析结果(Hanke等,2014),或者不包括多个软件包之间的比较(例如,The Human Connectome Project〜(7)中的分析(Van Essen等,2013))。仅使用FSL执行]。共享的原始数据是有用的资源,但是我们认为共享的处理后的数据也很重要,这不仅可以提供跨软件比较的基础,而且可以为测试自动出处软件创建基准。本文介绍的数据集是对文献中这一遗漏的一个贡献。方法数据源数据是从OpenfMRI的BIDS兼容ds000011数据集〜(8)之间下载的,日期为2016年2月9日至2016年2月15日。在原始论文中有对该范式的完整描述(Foerde等,2006)。第一项任务是一项训练练习,其中,参与者在一系列高音和低音调(“音调计数”条件)中计数高音,然后选择一个代表高音数的数字(“音调计数”探测”条件,以下称为“探测”)。我们使用声调计数作为关注的效果([1 0]与隐式基线的对比)对声调计数和探测条件进行了建模。单主题测试仅使用来自主题01的数据进行,而组级别测试则针对所有14个主题进行。在AFNI,SPM12和FSL中进行了分析。在AFNI中,使用uber_subject.py接口进行单主题变体,该接口生成并运行两个脚本:cmd.ap.sub_001和proc.sub_001。其他变体不需要更改界面中的选项,因此可以使用默认cmd.ap.sub_001脚本的副本直接从命令行运行。组级测试的脚本是手动创建的。对于每个SPM变体,创建了一个进行完整分析(使用跨处理步骤的依赖关系)的batch.m文件,并使用Batch Editor GUI运行。使用FSL的FMRI专家分析工具〜(9)对FSL特定的变体进行建模,其中使用FEAT GUI创建用于完整分析的.fsf文件。预定义设置在本节中,将为每个程序包描述在各种变量中保持不变的设置(例如,漂移建模)。这些预定义设置(包括预处理)对于每个变体都是相同的。预处理由于切片时间信息不适用于本研究,因此在此步骤中未考虑此步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号