...
首页> 外文期刊>Macedonian Journal of Chemistry and Chemical Engineering >A century of X-ray crystallography and 2014 international year of X-ray crystallography
【24h】

A century of X-ray crystallography and 2014 international year of X-ray crystallography

机译:一个世纪的X射线晶体学和2014年国际X射线晶体学年

获取原文

摘要

The 100 th anniversary of the Nobel prize awarded to Max von Laue in 1914 for his discovery of diffraction of X-rays on a crystal marked the beginning of a new branch of science - X-ray crystallography. The experimental evidence of von Laue's discovery was given by physicists W. Friedrich and P. Knipping in 1912. In the same year W. L. Bragg described the analogy between X-rays and visible light and formulated the Bragg's law, a fundamental relation, that connected the wave nature of X-rays and fine structure of a crystal at atomic level. In 1913 the first simple diffractometer was constructed and structure determination started by the Braggs, father and son. In 1915 their discoveries were awarded by Nobel prize in physics. Since then, X-ray diffraction has been basic method for determination of three-dimensional structures of synthetic and natural compounds. The three-dimensional structure of molecule defines its physical, chemical, and biological properties. All over the past century significance of X-ray crystallography has been recognized by about forty Nobel prizes. The examples of X-ray structure analysis, of simple crystals of rock salt, diamond and graphite, and then of complex biomolecules such as B12-vitamin, penicillin, haemoglobin/myoglobin, DNA, and biomolecular complexes such as viruses, chromatin, ribozyme, and other molecular machines, have illustrated the development of the method. Among these big discoveries double helix DNA structure is epochal one of 20 th century. These discoveries together with many others within X-ray crystallography completely changed our views and helped to be developed different new fields of science such as molecular genetics, biophysics, structural molecular biology, material science, and many others. During the last decade, an implementation of free electron X-ray lasers, a new experimental tool, has opened up femtosecond dynamic crystallography. This highly advanced methodology enables to solve the structures and dynamics of the most complex biological assemblies involved in a cell metabolism. The advancements of science and technology over 20 th and 21 st centuries are of great influence on our views in almost all human activities. The importance of X-ray crystallography for science and technology advocates for its high impact on a wide area of research and declares it as highly interdisciplinary science. Briefly saying, crystallography defines the shape of our modern world. The essay is far from being complete and it is concentrated on single crystal diffraction. The wide area of X-ray crystallography hardly can be reviewed in a single article. However, it highlights the most striking examples illustrating some of the milestones over past century.
机译:马克斯·冯·劳厄(Max von Laue)因发现X射线在晶体上的衍射而于1914年获得诺贝尔奖100周年,这标志着科学的一个新分支-X射线晶体学的开始。物理学家W. Friedrich和P. Knipping在1912年给出了冯·劳厄发现的实验证据。同年,WL布拉格描述了X射线和可见光之间的类比,并提出了布拉格定律,这是一个基本的关系,将法拉第与X射线的波特性和原子级晶体的精细结构。 1913年,第一台简单的衍射仪被制造出来,并且由布拉格父子俩开始确定结构。 1915年,他们的发现获得了诺贝尔物理学奖。从那时起,X射线衍射一直是测定合成和天然化合物三维结构的基本方法。分子的三维结构定义了其物理,化学和生物学特性。在过去的一个世纪中,X射线晶体学的重要性已获得约40项诺贝尔奖。 X射线结构分析的例子包括盐,钻石和石墨的简单晶体,然后是复杂的生物分子,例如B12-维生素,青霉素,血红蛋白/肌红蛋白,DNA,以及生物分子复合物,例如病毒,染色质,核酶,和其他分子机器,已经说明了该方法的发展。在这些重大发现中,双螺旋DNA结构是20世纪的划时代。这些发现以及X射线晶体学中的许多其他发现完全改变了我们的观点,并帮助发展了不同的科学新领域,例如分子遗传学,生物物理学,结构分子生物学,材料科学等。在过去的十年中,自由电子X射线激光器(一种新的实验工具)的实施开辟了飞秒动态晶体学。这种高度先进的方法能够解决细胞代谢中涉及的最复杂的生物装配的结构和动力学。 20世纪和21世纪科学技术的进步对我们几乎所有人类活动中的观点都具有重大影响。 X射线晶体学对科学和技术的重要性提倡X射线晶体学对广泛的研究领域具有重大影响,并宣布它是高度交叉学科的科学。简而言之,晶体学定义了我们现代世界的形态。这篇文章还远远不够完整,只专注于单晶衍射。 X射线晶体学的广泛领域几乎无法在一篇文章中进行综述。但是,它突出显示了最引人注目的示例,这些示例说明了上个世纪的一些里程碑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号