...
首页> 外文期刊>Magnetic resonance in medical sciences : >Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study
【24h】

Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study

机译:使用贝叶斯估计反卷积算法确定的Tmax用于团块跟踪灌注成像:数字幻象验证研究

获取原文
           

摘要

Purpose: The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. Methods: The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. Results: The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson’s correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Conclusions: Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.
机译:目的:贝叶斯估计算法可提高大剂量跟踪灌注成像的精度。但是,此算法无法直接计算Tmax(广泛用于识别缺血性半影​​的时间标度),因为Tmax是反映示踪剂到达延迟(TD)和其他参数的非生理性人工指标。我们根据贝叶斯算法获得的TD和平均渡越时间(MTT)计算了Tmax,并与奇异值分解(SVD)算法获得的Tmax相比,确定了其准确性。方法:TD和MTT映射是通过贝叶斯算法生成的,该算法应用于具有时间集中度曲线的数字体模,该时间集中度曲线使用全局动脉输入函数反映了各种灌注指标的一系列值。 Tmax是根据TD和MTT计算得出的,其常数是使用线性最小二乘法拟合得出的,该常数与从两个SVD算法获得的Tmax一致,这两个算法在先前的研究中显示出最佳基准。检查了通过贝叶斯方法和SVD方法获得的Tmax值之间的相关性。结果:贝叶斯算法产生了相对于数字体模真实值的准确TD和MTT值。根据具有最小二乘拟合常数的TD和MTT值计算出的Tmax与从SVD算法获得的Tmax表现出极好的相关性(皮尔逊相关系数= 0.99)和一致性(类内相关系数= 0.99)。结论:从贝叶斯估计算法得出的TD和MTT的数字体模计算得出的Tmax值的定量分析与使用SVD算法确定的Tmax值相关并很好地吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号