首页> 外文期刊>Frontiers in Plant Science >Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics
【24h】

Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

机译:定量蛋白质组学和磷酸化蛋白质组学揭示了盐度诱导的耐盐藻<斜体>杜氏盐藻中棕榈形成的机理。

获取原文
           

摘要

Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti~(4+)-immobilized metal ion affinity chromatography (IMAC) proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway), nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI) networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.
机译:Palmella期对于某些单细胞藻类在极端环境中生存至关重要。耐盐藻杜氏盐藻是研究植物对高盐度适应性的良好单细胞模型。为了研究盐度休克诱导的棕榈果形成中的分子适应机制,我们使用二甲基标记和固定有Ti〜(4+)的金属离子亲和色谱法(IMAC)对盐沼中的棕榈果形成了全面的生理,蛋白质组学和磷酸化蛋白质组学研究。蛋白质组学方法。我们发现151盐度响应蛋白和35盐度响应磷蛋白参与棕榈形成后的多个信号和代谢途径。结合光合作用参数和酶活性分析,蛋白质积累和磷酸化水平的模式表现出棕榈果形成的机制,包括细胞骨架和细胞膜曲率的动态,胞外多糖的积累和运输,光合作用和能量供应(即光系统II的稳定性)。和活性,循环电子运输和C4途径),核/叶绿体基因表达调控和蛋白质加工,活性氧稳态和盐信号转导。盐度响应蛋白与蛋白相互作用(PPI)网络暗示信号,蛋白合成和命运对于调节这些过程至关重要。重要的是,磷蛋白的3D结构清楚地表明八个蛋白的磷酸化位点位于功能域区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号