首页> 外文期刊>Frontiers in Plant Science >Emergence of Intronless Evolutionary Forms of Stress Response Genes: Possible Relation to Terrestrial Adaptation of Green Plants
【24h】

Emergence of Intronless Evolutionary Forms of Stress Response Genes: Possible Relation to Terrestrial Adaptation of Green Plants

机译:胁迫响应基因的无内含进化形式的出现:与绿色植物的陆地适应的可能关系。

获取原文
       

摘要

The currently known gene repertoire related to terrestrialization of plants includes genes of responses to different stresses, such as UV radiation, microbial pathogen attacks, desiccation, salinity, low, and high temperature. Evolutionary details of exon-intron organization in these genes are not analyzed comprehensively, although such an analysis would be rather informative and important for understanding their evolutionary history. Particularly, a series of papers on Phragmoplastophyta stress-related intron-containing genes show their origin by horizontal gene transfer of intronless prokaryotic genes (Emiliani et al., 2009 ; Fang et al., 2017 ). The 4/1 protein is specific to plants; biochemical and cell biology data were obtained mostly for the Nicotiana tabacum 4/1 protein (Nt-4/1) (Makarova et al., 2011 ; Morozov et al., 2014 ; Atabekova et al., 2018 ). Recently, we reported that Nt-4/1 could respond to mechanical and temperature stresses by re-localization into numerous small spherical bodies likely associated with the cortical ER-plasma membrane contact sites (Atabekova et al., 2018 ). Previous studies have shown that there are some potential stress-responsive proteins among two dozen Arabidopsis and tobacco proteins interacting with 4/1 in the yeast two-hybrid system. These proteins include PBL, the ortholog of the well-characterized human ER-localized BAP31 protein; CPL, the phosphatase known to dephosphorylate the C-terminal domain of the largest subunit of DNA-dependent RNA polymerase II and involved in responses to different abiotic stress; and several stress-related transcription factors (Minina et al., 2009 ; Atabekova et al., 2017 , 2018 ; Pankratenko et al., 2017 ). Importantly, the data available in public domain microarray databases showed that expression levels of Arabidopsis and rice 4/1 genes could significantly change in response to several stress factors, particularly, anoxia, and fungal infection (Solovyev et al., 2013a ; Morozov et al., 2014 ). According to computer predictions, the secondary structure of myosin-like Nt-4/1 protein is mainly α-helical; Nt-4/1 was predicted to have six extended α-helices, and five of them represented coiled-coil structural elements (von Bargen et al., 2001 ; Makarova et al., 2011 , 2014 ; Solovyev et al., 2013b ) ( Supplementary Figure 1 ). While silencing of 4/1 gene in transgenic N. benthamiana caused no major morphological alterations in plants (Makarova et al., 2011 ; Morozov et al., 2014 ), transient virus-induced silencing of 4/1 gene in N . benthamiana resulted in faster phloem transport of Potato spindle tuber viroid (Solovyev et al., 2013a ). These data were in line with our findings showing that at the 4/1 promoter is active in veins, with its activity being detected mostly in xylem parenchyma, phloem parenchyma, and primary phloem cells (Solovyev et al., 2013a ). Organ- and tissue-specific expression patterns of some other plant 4/1 genes in public microarray databases were found to be consistent with 4/1 expression in conductive tissues (Solovyev et al., 2013a ; Morozov et al., 2014 ). Thus, we proposed that the 4/1 protein could influence stress signaling in the vasculature (Atabekova et al., 2018 ). The 4/1 genes encoded by the genomes of genera Arabidopsis and Nicotiana were shown to contain eight exons and seven introns (Paape et al., 2006 ; Makarova et al., 2011 ). A similar exon-intron structure was found for most 4/1 genes encoded by other dicotyledonous and monocotyledonous plants with some notable exceptions (Morozov et al., 2015 ) ( Figure 1 ). To better understand the evolution of 4/1 genes, a comparative analysis of these genes in lower land plants in combination with structural analysis of encoded proteins was carried out. We have partially or completely sequenced 4/1 genes of some representatives of liverworts, Lycopodiopsida, ferns, and gymnosperms (Morozov et al., 2015 ). Interestingly, using publicly available databases containing next generation sequencing data, we were unable to identify 4/1-specific signatures in genomes of mosses Physcomitrella patens (class Bryopsida) and Sphagnum fallax (class Sphagnopsida). However, we reported that the genomes of basal land plants Marchantia polymorpha (class Marchantiopsida) and Anthoceros agrestis (class Anthocerotopsida) as well as partial assembled charophyte cDNA sequences from Chaetosphaeridium globosum (class Coleochaetophyceae) and several species of class Zygnematophyceae (including Spirogyra pratensis ), could encode proteins similar to 4/1 proteins of Magnoliophyta (Morozov et al., 2014 , 2015 ). Importantly, our efforts to reveal 4/1-like genes in basal charophyte classes Klebsormidiophyceae (Hori et al., 2014 ) and Chlorokybophyceae as well as in all moss classes, failed (Morozov et al., 2015 ). Figure 1 The exon/intron structure of selected plant stress-related genes in representatives of different taxa. Exons are indicated by boxes, and introns are indicated by li
机译:当前已知的与植物的陆地化有关的基因库包括对不同胁迫的响应的基因,所述胁迫例如是紫外线辐射,微生物病原体侵袭,干燥,盐度,低温和高温。这些基因中外显子-内含子组织的进化细节没有得到全面分析,尽管这样的分析对于理解它们的进化历史将是十分有益的,而且很重要。尤其是,一系列有关芦苇质体胁迫相关内含子基因的论文通过无内含子原核基因的水平基因转移显示了它们的起源(Emiliani等,2009; Fang等,2017)。 4/1蛋白对植物具​​有特异性。生化和细胞生物学数据主要是针对烟草4/1蛋白(Nt-4 / 1)获得的(Makarova等,2011; Morozov等,2014; Atabekova等,2018)。最近,我们报道了Nt-4 / 1可以通过重新定位到可能与皮质ER-质膜接触部位相关的许多小球形体中来响应机械应力和温度应力(Atabekova et al。,2018)。先前的研究表明,在酵母两杂交系统中,十二种拟南芥中有一些潜在的胁迫响应蛋白,而烟草蛋白与4/1相互作用。这些蛋白质包括PBL,即特征明确的人ER定位BAP31蛋白质的直系同源物; CPL,一种磷酸酶,已知能使依赖于DNA的RNA聚合酶II的最大亚基的C端结构域脱磷酸,并参与对不同非生物胁迫的反应;和一些与压力相关的转录因子(Minina等,2009; Atabekova等,2017,2018; Pankratenko等,2017)。重要的是,公共领域微阵列数据库中的可用数据表明,拟南芥和水稻4/1基因的表达水平可能会响应多种胁迫因素而发生显着变化,尤其是缺氧和真菌感染(Solovyev等人,2013a; Morozov等人。,2014)。根据计算机预测,肌球蛋白样Nt-4 / 1蛋白的二级结构主要为α-螺旋。预测Nt-4 / 1具有6个延伸的α螺旋,其中5个代表卷曲螺旋结构元素(von Bargen等,2001; Makarova等,2011,2014; Solovyev等,2013b) (补充图1)。尽管转基因本氏烟草中4/1基因的沉默没有引起植物的主要形态学改变(Makarova等,2011; Morozov等人,2014),但瞬时病毒诱导了烟草中4/1基因的沉默。 benthamiana可以使马铃薯纺锤形块茎类病毒的韧皮部运输更快(Solovyev等,2013a)。这些数据与我们的发现一致,表明4/1启动子在静脉中具有活性,其活性主要在木质部薄壁组织,韧皮部薄壁组织和原发韧皮部细胞中检测到(Solovyev等人,2013a)。在公共微阵列数据库中,发现其他一些植物4/1基因的器官和组织特异性表达模式与导电组织中4/1表达一致(Solovyev等,2013a; Morozov等,2014)。因此,我们提出4/1蛋白可能影响脉管系统中的应激信号传导(Atabekova et al。,2018)。由拟南芥属和烟草属的基因组编码的4/1基因显示含有八个外显子和七个内含子(Paape等,2006; Makarova等,2011)。对于其他双子叶植物和单子叶植物编码的大多数4/1基因,发现了相似的外显子-内含子结构(Morozov等,2015)(图1)。为了更好地理解4/1基因的进化,结合编码蛋白的结构分析,对低地植物中的这些基因进行了比较分析。我们已经部分或完全测序了一些代表地雌草,番茄,裸藻和裸子植物的4/1基因(Morozov et al。,2015)。有趣的是,使用包含下一代测序数据的公共数据库,我们无法在苔藓假单胞菌苔藓(类隐孢子虫)和鳞茎法属(Sphagnumpsax)的基因组中鉴定4/1特异特征。然而,我们报道了基础陆生植物马钱子兰(Marchantopsida类)和Anthoceros agrestis(Anthocerotopsida类)的基因组,以及来自球壳嗜蓝球藻(Colleochaetophyceae类)和几种食虫类(Zygnematophyceae)(包括螺旋藻)的部分组装的嗜藻细胞cDNA序列。可以编码类似于Magnoliophyta的4/1蛋白的蛋白(Morozov等,2014,2015)。重要的是,我们揭示基生藻类(Korbsormidiophyceae)(Hori等人,2014)和绿藻科以及所有苔藓类中4/1样基因的努力均告失败(Morozov等人,2015)。图1不同分类群中所选植物胁迫相关基因的外显子/内含子结构。外显子用框表示,内含子用li表示

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号