...
首页> 外文期刊>Frontiers in Plant Science >Plant ER-PM Contact Sites in Endocytosis and Autophagy: Does the Local Composition of Membrane Phospholipid Play a Role?
【24h】

Plant ER-PM Contact Sites in Endocytosis and Autophagy: Does the Local Composition of Membrane Phospholipid Play a Role?

机译:内吞和自噬中的植物ER-PM接触位点:膜磷脂的局部组成是否起作用?

获取原文
           

摘要

Plant EPCS Resident Proteins Direct interaction between the ER and PM was identified in plants in many early studies (Staehelin and Chapman, 1987 ; Staehelin, 1997 ; Perico and Sparkes, 2018 ), where two membranes of distinct organelles are in close apposition without fusing. However, proteins localized to these sites have recently been identified in plants and these include VAP27, NET3C, and SYT1 (or SYTA) (Wang et al., 2014 , 2016 ; Pérez-Sancho et al., 2015 , 2016 ; Siao et al., 2016 ; McFarlane et al., 2017 ). Of these three proteins, VAP27 is the most well-known (as Scs2 in yeast and as VAP in animals). VAP-like proteins have been shown to be involved in the formation of different MCS as well as EPCS (Salvador-Gallego et al., 2017 ). The VAP27 family is expanded in plants; for example, the Arabidopsis genome encodes 10 VAP27-related proteins (Wang et al., 2016 ), while the human and S. cerevisiae genomes encode three and two VAP27-related proteins, respectively. Therefore, the function of the plant VAP27 proteins are likely to be more diverse, and they may fulfill some of the functions of those animal EPCS proteins that are missing in plants. The extended-synaptotagmins (E-SYTs) have also been shown to be essential for the formation of EPCS. The plant SYT family contains five members, all of which are similar in peptide sequence to both synaptotagmins (SYTs) and extended-synaptotagmins (E-SYTs) in metazoans (Manford et al., 2012 ; Malmersj? and Meyer, 2013 ). However, plant SYT1 is more functionally equivalent to E-SYTs as knock-out expression affects both ER morphology and PM tethering (Levy et al., 2015 ; Siao et al., 2016 ; McFarlane et al., 2017 ). NET3C is a member of the NETWORKED family which is unique to plants (Deeks et al., 2012 ). NET3C localizes to the EPCS and interacts with VAP27 (Wang et al., 2014 ). Different members of the NETWORKED family bind to the actin cytoskeleton localizing the network to different membranes structures where they act as membrane-cytoskeleton adaptors or linkers. Some other Arabidopsis NET proteins also localize to stationary foci at the PM (e.g., NET2A), these structures may also represent EPCS (Duckney et al., 2017 ) but further studies are required for this to be confirmed. In summary, the ER-PM connection is a conserved link observed across phylogeny, with some features that appear to be specific for plants. Because of this conservation, it is likely that many of the known functions of EPCS are likely to be conserved, such as the regulation of phospholipid homeostasis, endocytosis, and autophagosome formation, but the differences may also reflect some plant specific additions/adaptations to their function. EPCS in regulating Lipid Transport, Composition, and Homeostasis Early studies demonstrated that the yeast EPCS resident protein, VAP, binds to lipid binding proteins and recruits these proteins (e.g., Osh2, 3) to the ER-PM interface, where they regulate lipid metabolism (Loewen and Levine, 2005 ). In addition, many other lipid-synthesizing enzymes are enriched at these contact sites and these include OPI3 (a phosphatidylethanolamine N -methyltransferase) which synthesizes phosphatidylcholines (PC). Disrupting the ER-PM connection by knocking-out VAP (Scs2) gene expression reduces PC levels, indicating that an intact EPCS structure is important for the function of OPI3 (Tavassoli et al., 2013 ). Moreover, lipid synthesis enzymes are not only localized to the EPCS as they may also regulate the formation of this connection, for example, PAH1 (a phosphatidic acid phosphatase enzyme) whose over-expression can restore the ER-PM connection in the Scs2 mutant (Tavassoli et al., 2013 ). In Hela cells, on the other hand, EPCS localized lipid binding protein, TMEM24, regulates the transport of phosphatidylinositol between ER and PM (Lees et al., 2017 ). Similar activities have been reported for many lipid binding proteins in other cell types; such as ORPs/Osh proteins which bind to oxysterol as well as to phosphoinositide (Saheki and De Camilli, 2017 ; Sohn et al., 2018 ), and Aster proteins which are recruited to the PM in response to cholesterol accumulation and these proteins transport the excess cholesterol back to the ER (Sandhu et al., 2018 ). In addition, another key function of EPCS is to regulate local lipid composition and homeostasis. Among all lipid molecules, phosphatidylinositol serves an essential role in signaling and cytoskeleton re-organization. One of the most well-known regulators of PI-signaling is Sac1, an ER localized PI phosphatase that could covert PI monophosphates (such as PI3P, PI4P) to PI (Nemoto et al., 2000 ). When activated, Sac1 can be recruited to the PM, where it dephosphorylates PI4P and consequently reduces the level of PI(4,5)P2 in order to maintain steady state (Stefan et al., 2011 ; Dickson et al., 2016 ). However, the spatial organization of Sac1 is controlled by EPCS resident proteins, such as E-Syts and the Scs2/Osh3 comple
机译:植物EPCS驻留蛋白在许多早期研究中(Staehelin和Chapman,1987; Staehelin,1997; Perico和Sparkes,2018),在植物中发现了ER和PM之间的直接相互作用,其中两个不同细胞器的膜紧密并置,没有融合。然而,最近在植物中发现了定位于这些位点的蛋白质,这些蛋白质包括VAP27,NET3C和SYT1(或SYTA)(Wang等人,2014年,2016年;Pérez-Sancho等人,2015年,2016年; Siao等人。 (2016; McFarlane等,2017)。在这三种蛋白质中,VAP27是最著名的(在酵母中为Scs2,在动物中为VAP)。 VAP样蛋白已被证明参与不同MCS和EPCS的形成(Salvador-Gallego et al。,2017)。 VAP27系列已在植物中扩展;例如,拟南芥基因组编码10个VAP27相关蛋白(Wang等,2016),而人类和酿酒酵母基因组分别编码3个和2个VAP27相关蛋白。因此,植物VAP27蛋白的功能可能更多样化,并且它们可以履行植物中缺少的那些动物EPCS蛋白的某些功能。扩展的突触素(E-SYTs)也已被证明对于EPCS的形成至关重要。植物SYT家族包含五个成员,所有成员的肽序列都与后生动物中的突触标记素(SYT)和延伸突触标记素(E-SYT)相似(Manford等人,2012; Malmersj?和Meyer,2013)。然而,植物SYT1在功能上与E-SYT更等效,因为敲除表达会影响ER形态和PM系链(Levy等人,2015; Siao等人,2016; McFarlane等人,2017)。 NET3C是植物独有的NETWORKED家族的成员(Deeks等,2012)。 NET3C定位到EPCS并与VAP27交互(Wang等,2014)。 NETWORKED家族的不同成员与肌动蛋白细胞骨架结合,将网络定位于不同的膜结构,在其中它们充当膜细胞骨架衔接子或接头。其他一些拟南芥NET蛋白也位于PM的固定病灶(例如NET2A),这些结构也可能代表EPCS(Duckney等人,2017),但需要对此进行进一步研究。总而言之,ER-PM连接是在整个系统发育学中观察到的保守链接,具有某些特定于植物的特征。由于这种保守性,EPCS的许多已知功能很可能会得以保留,例如磷脂稳态,内吞作用和自噬体形成的调节,但这些差异也可能反映了某些植物特有的添加/适应其功能。功能。 EPCS调节脂质转运,组成和体内稳态早期研究表明,酵母EPCS驻留蛋白VAP与脂质结合蛋白结合,并将这些蛋白(例如Osh2、3)募集到ER-PM界面,在那里它们调节脂质代谢(Loewen和Levine,2005年)。另外,许多其他脂质合成酶在这些接触位点富集,其中包括合成磷脂酰胆碱(PC)的OPI3(磷脂酰乙醇胺N-甲基转移酶)。通过敲除VAP(Scs2)基因表达来破坏ER-PM连接会降低PC水平,这表明完整的EPCS结构对于OPI3的功能很重要(Tavassoli et al。,2013)。此外,脂质合成酶不仅位于EPCS上,因为它们还可以调节这种连接的形成,例如PAH1(一种磷脂酸磷酸酶),其过表达可以恢复Scs2突变体中的ER-PM连接( Tavassoli等,2013)。另一方面,在Hela细胞中,EPCS局部脂质结合蛋白TMEM24调节ER和PM之间的磷脂酰肌醇的转运(Lees et al。,2017)。对于其他细胞类型中的许多脂质结合蛋白,已经报道了类似的活性。例如与氧固醇以及磷酸肌醇结合的ORP / Osh蛋白(Saheki and De Camilli,2017; Sohn et al。,2018),以及因胆固醇积累而被募集到PM中的Aster蛋白,这些蛋白转运多余的胆固醇返回ER(Sandhu等人,2018)。此外,EPCS的另一个关键功能是调节局部脂质组成和体内稳态。在所有脂质分子中,磷脂酰肌醇在信号传导和细胞骨架重组中起着至关重要的作用。 PI信号的最著名的调节剂之一是Sac1,它是一种ER定位的PI磷酸酶,可以将PI单磷酸(如PI3P,PI4P)转化为PI(Nemoto等,2000)。激活后,Sac1可以被募集到PM中,从而使PI4P脱磷酸化并因此降低PI(4,5)P2的水平以维持稳态(Stefan等,2011; Dickson等,2016)。但是,Sac1的空间组织受EPCS驻留蛋白(例如E-Syts和Scs2 / Osh3 comple)的控制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号