...
首页> 外文期刊>Frontiers in Marine Science >Ocean Climate Monitoring
【24h】

Ocean Climate Monitoring

机译:海洋气候监测

获取原文

摘要

Measuring ocean physics and atmospheric conditions at the sea-surface has been taking place for decades in our world’s oceans. Enhancing R&D technologies developed in Federal and academic institutions and laboratories such as WHOI’s Vector Averaging Current Meter (VACM, 1970s) and NOAA – PMEL’s: Autonomous Temperature Line Acquisition System (ATLAS, 1980s) as example, in-situ ocean measurements and real-time telemetry for data processing and dissemination from remote areas of oceans and seas are now common place. A transition of this “ocean monitoring” technology has occurred with additional support from individual and group innovative efforts in the field of ocean instrumentation. As a result, long-term monitoring of ocean processes and changes has become more accessible to the research community at large. Here; we discuss a “Hybrid” air-sea interaction deep-sea monitoring system that has been developed in the private sector to mirror ocean-climate community data streams and has been successfully deployed on three basin-scaled programs in the Indian Ocean (RAMA, First Institute of Oceanography, FIO, China), the Andaman Sea (MOMSEI, Monsoon Onset Monitoring, FIO) and the Pacific Ocean (China’s Institute of Oceanology, Academy of Sciences research in the western tropical Pacific). This application is a base to build upon as new sensors are developed and increased sampling at higher resolutions is required. A multidisciplinary tool to add new biological and biogeochemical sensors to study interaction with the physical processes of our oceans. This application can also be used at FLUX sites to enhance the Argo Program, telemetry docking stations for autonomous vehicles such as sail-drones, gliders and wave riders for enhancement and contribution to the Global Tropical Moored Buoy Array (GTMBA), Global Ocean Observing System (GOOS), Global Climate Observing System (GCOS), and the Global Earth Observing System of Systems (GEOS).
机译:在我们的世界海洋中,数十年来一直在测量海面的海洋物理学和大气状况。加强联邦和学术机构和实验室开发的研发技术,例如WHOI的矢量平均电流表(VACM,1970年代)和NOAA – PMEL的:自主温度线采集系统(ATLAS,1980年代),原位海洋测量和实时遥测技术用于数据处理和海洋偏远地区的传播现在很普遍。在海洋仪器仪表领域的个人和团体创新努力的额外支持下,这种“海洋监测”技术已经发生了转变。结果,整个研究界都可以更容易地进行海洋过程和变化的长期监测。这里;我们讨论了一种“混合型”海海相互作用深海监测系统,该系统已在私营部门开发,以反映海洋气候社区数据流,并已成功部署在印度洋的三个流域级计划中(RAMA,第一个中国海洋研究所海洋研究所,安达曼海海洋气象研究所(MSMS),季风爆发监测实验室(FIO)和太平洋海洋(中国海洋研究所,中国科学院在热带西太平洋的研究)。随着新传感器的开发和要求以更高的分辨率增加采样量,该应用程序可作为基础。一个添加新的生物和生物地球化学传感器以研究与我们海洋物理过程的相互作用的多学科工具。该应用程序还可以在FLUX站点上使用,以增强Argo计划,自动驾驶汽车的遥测对接站,如风帆无人机,滑翔机和波浪乘员,以增强和为全球热带系泊浮标阵列(GTMBA)和全球海洋观测系统做出贡献(GOOS),全球气候观测系统(GCOS)和全球地球观测系统系统(GEOS)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号