...
首页> 外文期刊>Frontiers in Plant Science >Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy
【24h】

Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy

机译:木质纤维素生物质水解的同步加速时间流逝成像:通过蛋白质自发荧光跟踪酶的定位和通过微流控红外显微技术对细胞壁的生化修饰。

获取原文

摘要

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast? preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.
机译:跟踪酶的定位以及对底物进行局部生化修饰后,应有助于解释木质纤维素植物细胞壁对酶促降解的顽固性。使用常规成像进行的延时研究需要酶标记并遵循植物细胞壁中发现的生物聚合物的生物化学修饰,这很难实现。在目前的工作中,同步加速器设施已用于对木质纤维素生物质的酶促降解成像,而无需标记酶或细胞壁。在275 nm激发后,蛋白质和酚类化合物的多通道自发荧光成像突出显示了细胞壁上酶的存在或不存在,并使得在反应过程中追踪它们成为可能。使用图像分析来量化荧光强度变化。在细胞腔及其周围细胞壁中局部发现了酶浓度的一致变化。微流变FT-IR显微光谱技术可以在降解过程中对细胞壁中多糖的局部变化进行时移跟踪。发现半纤维素降解发生在使用Celluclast?降解纤维素之前。制备。结合荧光和FT-IR信息得出的结论是,酶不与木质素细胞壁结合,因此不会降解。荧光多尺度成像和FT-IR显微光谱显示了初始生化成分和降解模式的意外变化,突出了给定细胞的细胞壁中的微区。荧光强度定量显示酶不均匀分布,并且在可降解细胞壁上酶的数量逐渐增加。在降解过程中,相邻细胞分离并且细胞壁破碎直至完全降解。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号