首页> 外文期刊>Frontiers in Neurogenesis >Experience-Dependent Structural Plasticity of Adult-Born Neurons in the Aging Hippocampus
【24h】

Experience-Dependent Structural Plasticity of Adult-Born Neurons in the Aging Hippocampus

机译:依赖经验的海马成年神经元的结构可塑性

获取原文
       

摘要

Synaptic modification in cortical structures underlies the acquisition of novel information that results in learning and memory formation. In the adult dentate gyrus, circuit remodeling is boosted by the generation of new granule cells (GCs) that contribute to specific aspects of memory encoding. These forms of plasticity decrease in the aging brain, where both the rate of adult neurogenesis and the speed of morphological maturation of newly-generated neurons decline. In the young-adult brain, a brief novel experience accelerates the integration of new neurons. The extent to which such degree of plasticity is preserved in the aging hippocampus remains unclear. In this work, we characterized the time course of functional integration of adult-born GCs in middle-aged mice. We performed whole-cell recordings in developing GCs from Ascl1CreERT2;CAGfloxStopTom mice and found a late onset of functional excitatory synaptogenesis, which occurred at 4 weeks (vs. 2 weeks in young-adult mice). Overall mature excitability and maximal glutamatergic connectivity were achieved at 10 weeks. In contrast, large mossy fiber boutons (MFBs) in CA3 displayed mature morphological features including filopodial extensions at 4 weeks, suggesting that efferent connectivity develops faster than afference. Notably, new GCs from aging mice exposed to enriched environment for 7 days showed an advanced degree of maturity at 3 weeks, revealed by the high frequency of excitatory postsynaptic responses, complex dendritic trees, and large size of MFBs with filopodial extensions. These findings demonstrate that adult-born neurons act as sensors that transduce behavioral stimuli into major network remodeling in the aging brain.
机译:皮质结构中的突触修饰是获取导致学习和记忆形成的新信息的基础。在成年的齿状回中,新的颗粒细胞(GC)的产生促进了电路重塑,这些颗粒细胞有助于记忆编码的特定方面。这些形式的可塑性在衰老的大脑中减少,其中成人神经发生的速率和新生神经元的形态成熟速度均下降。在年轻人的大脑中,短暂的新颖经历会加速新神经元的整合。在衰老的海马体中保持这种可塑性程度的程度仍不清楚。在这项工作中,我们表征了中年小鼠成年GC功能整合的时程。我们在来自Ascl1CreERT2; CAGfloxStopTom小鼠的发育中的GC中进行全细胞记录,发现功能性兴奋性突触发生的迟发性发作发生在4周时(成年小鼠为2周)。在10周时达到总体成熟的兴奋性和最大的谷氨酸能连接性。相比之下,CA3中的长苔藓纤维钮扣(MFB)在4周时表现出成熟的形态特征,包括丝状伸展,这表明传出的连通性发展快于侵染性。值得注意的是,来自暴露于丰富环境下7天的衰老小鼠的新GC在3周时显示出较高的成熟度,这表现为兴奋性突触后反应的频率高,树突状树的复杂性以及具有成虫延伸性的MFB的大小。这些发现表明,成年出生的神经元充当传感器,将行为刺激转化为衰老的大脑中的主要网络重塑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号