...
首页> 外文期刊>Frontiers in Immunology >Editorial: Neuro-Immune Interactions in Inflammation and Autoimmunity
【24h】

Editorial: Neuro-Immune Interactions in Inflammation and Autoimmunity

机译:社论:炎症和自身免疫中的神经免疫相互作用

获取原文

摘要

Editorial on the Research Topic Neuro-Immune Interactions in Inflammation and Autoimmunity The nervous system plays an important role in the regulation of immunity and inflammation ( 1 , 2 ). However, neuronal integrity and brain function may be severely altered in inflammatory and autoimmune conditions ( 3 – 5 ). Recent studies have characterized neural pathways communicating peripheral inflammatory signals to the central nervous system (CNS), and brain- and spinal cord-derived circuitries controlling various innate and adaptive immune responses and inflammation ( 1 , 2 ). A prototypical neural reflex circuit that regulates immunity and inflammation is the vagus nerve-based “inflammatory reflex” ( 6 ). Pharmacological and bioelectronic modulation of neural cholinergic circuitry in the inflammatory reflex has been successfully explored in preclinical settings of sepsis, arthritis, inflammatory bowel disease, obesity-driven disorders, diabetes, and other diseases ( 1 ). These studies paved the way to successful clinical trials in inflammatory bowel disease, rheumatoid arthritis, and metabolic syndrome ( 7 – 9 ). Dysregulated release of cytokines and other inflammatory molecules may have a severe impact on brain function ( 10 ). Brain inflammation (neuroinflammation), imbalances in brain neuronal integrity, neurotransmitter release, and cognitive impairment are characteristic features of perioperative neurological disorders, sepsis, pain, liver diseases, diabetes, and other conditions characterized by immune and metabolic dysregulation ( 3 , 11 , 12 ). These findings and the characterization of brain-reactive antibodies and neuroprotective cytokines indicated new therapeutic approaches for treating inflammatory and autoimmune disorders and their neurological complications ( 4 , 13 , 14 ). The collection of 19 papers on this research topic substantially contributes to improved understanding of neuro-immune communication and its therapeutic relevance. Yuki et al. ?elaborate on neuro-immune interactions within the gateway reflexes that regulate the entry of pathogenic CD4~(+)T lymphocytes in the CNS and neuroinflammation. They also point to the need of further characterization of the functional anatomy of these reflexes that will be of interest for their therapeutic exploration to alleviate local neuroinflammation in pathological conditions, including multiple sclerosis. Bonaz et al. review the role of the vagus nerve as a regulator of inflammatory processes in the gastrointestinal tract. They also elaborate on accumulating experimental evidence indicating possibilities to use electrical vagus nerve stimulation for therapeutic benefit in inflammatory bowel disease and other gastrointestinal disorders in preclinical and clinical settings. Innoe et al. outline new findings related to the neural vagus nerve control of inflammation with a specific focus on the kidney disease. They also summarize evidence that this neural regulation can be activated by the use of ultrasound and other modalities to alleviate inflammation and acute kidney injury in murine models. The splenic noradrenergic innervations are implicated in neuroimmunomodulation and are an important component of the inflammatory reflex through their functional cooperation with the vagus nerve. Hoover et al. provide insight into the anatomy of noradrenergic neurons in relation to leukocytes in the human spleen and experimental evidence for a significant splenic noradrenergic neuronal loss in patients who died from sepsis. These findings are of interest for further studies on the neural regulation of inflammatory processes in the spleen in the context of sepsis and other conditions. Fujii et al. present a thorough review of the cholinergic system, including choline acetyltransferase, acetylcholinesterase, acetylcholine, and muscarinic and nicotinic acetylcholine receptors in immune cells, such as macrophages, dendritic cells, and T and B lymphocytes. They also summarize findings about the functional role of this non-neuronal cholinergic system in the regulation of innate and adaptive immune responses. Valdés-Ferrer et al. evaluated the role of pyridostigmine, an acetyl-cholinesterase inhibitor, in a 16-week proof-of-concept open-label trial in HIV-infected patients with discordant immune responses. By using this strategy, the authors harnessed the cholinergic anti-inflammatory pathway and demonstrated that pyridostigmine can promote recovery of CD4~(+)T-cell counts by reducing T cell overactivation. Bosmans et al. discuss the role of cholinergic signaling, mediated through nicotinic and muscarinic receptors in the regulation of allergic inflammation, including barrier function, innate and adaptive immune responses, and effector cells responses. They also point to possibilities of exploring cholinergic regulation of type 2 immune responses in the treatment of allergic diseases. Mader et al. outline how antibodies associated with autoimmune diseases lead to br
机译:研究主题的社论:炎症和自身免疫中的神经-免疫相互作用神经系统在调节免疫和炎症中起着重要作用(1,2)。但是,在炎性和自身免疫性疾病中,神经元完整性和脑功能可能会发生严重改变(3-5)。最近的研究已经表征了将周围炎症信号传递到中枢神经系统(CNS)的神经通路,以及控制各种先天和适应性免疫反应和炎症的脑和脊髓衍生的回路(1,2,3)。调节免疫力和炎症的典型神经反射回路是基于迷走神经的“炎症反射”(6)。在败血症,关节炎,炎症性肠病,肥胖症,糖尿病和其他疾病的临床前环境中,已经成功探索了炎症反射中神经胆碱能回路的药理和生物电子调节作用(1)。这些研究为炎症性肠病,类风湿性关节炎和代谢综合征的成功临床试验铺平了道路(7-9)。细胞因子和其他炎性分子释放失调可能对脑功能产生严重影响(10)。脑部炎症(神经炎症),脑神经元完整性失衡,神经递质释放和认知障碍是围手术期神经系统疾病,败血症,疼痛,肝病,糖尿病和其他以免疫和代谢失调为特征的疾病的特征(3,11,12 )。这些发现以及脑反应性抗体和神经保护性细胞因子的特性为治疗炎症和自身免疫性疾病及其神经系统并发症提供了新的治疗方法(4、13、14)。关于该研究主题的19篇论文的收集在很大程度上有助于增进对神经免疫沟通及其治疗意义的理解。 Yuki等。详细阐述了网关反射内的神经免疫相互作用,该相互作用调节了中枢神经系统中病原性CD4〜(+)T淋巴细胞的进入和神经炎症。他们还指出,需要进一步表征这些反射的功能解剖结构,这对他们进行治疗性探索以减轻病理状况(包括多发性硬化症)中的局部神经炎症很重要。 Bonaz等。回顾了迷走神经在胃肠道炎症过程中的调节作用。他们还详细说明了积累的实验证据,这些证据表明在临床前和临床环境中使用迷走神经电刺激治疗炎症性肠病和其他胃肠道疾病的可能性很有可能。 Innoe等。概述与炎症的神经迷走神经控制有关的新发现,特别是针对肾脏疾病。他们还总结了证据,表明可以通过使用超声波和其他方法减轻小鼠模型中的炎症和急性肾损伤来激活这种神经调节作用。脾脏去甲肾上腺素能神经支配涉及神经免疫调节,并通过其与迷走神经的功能配合而成为炎症反射的重要组成部分。胡佛等。揭示了与人类脾脏中白细胞相关的去甲肾上腺素能神经元的解剖结构,并为死于败血症的患者提供了明显的脾脏去甲肾上腺素能神经元损失的实验证据。这些发现对于脓毒症和其他情况下脾脏炎性过程的神经调节的进一步研究感兴趣。藤井等。综述了胆碱能系统,包括胆碱乙酰基转移酶,乙酰胆碱酯酶,乙酰胆碱,以及免疫细胞(例如巨噬细胞,树突状细胞以及T和B淋巴细胞)中毒蕈碱和烟碱乙酰胆碱受体的全面综述。他们还总结了有关这种非神经胆碱能系统在调节先天和适应性免疫应答中的功能作用的发现。 Valdés-Ferrer等。在一项为期16周的概念验证性开放标签试验中,评估了乙酰胆碱酯酶抑制剂吡啶斯的明的作用,该试验针对免疫反应不一致的HIV感染患者。通过使用这种策略,作者利用了胆碱能抗炎途径,并证明吡啶斯的明可以通过减少T细胞过度活化来促进CD4〜(+)T细胞计数的恢复。 Bosmans等。讨论了通过烟碱和毒蕈碱受体介导的胆碱能信号传导在变应性炎症调节中的作用,包括屏障功能,先天和适应性免疫应答以及效应细胞应答。他们还指出在过敏性疾病治疗中探索2型免疫反应的胆碱能调节的可能性。 Mader等。概述与自身免疫性疾病相关的抗体如何导致br

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号