...
首页> 外文期刊>Frontiers in Physiology >Athlete Performance Monitoring in Anti-Doping
【24h】

Athlete Performance Monitoring in Anti-Doping

机译:反兴奋剂中运动员表现监测

获取原文
           

摘要

The use of information technology within sport has significantly increased over recent years. These data and information have the potential to make a significant impact on sporting performance, and the nature of its related sciences too. For example, the retrospective analysis of sporting performance data affords the possibility to identify the impact of various technological advances and rule changes on world record performances in sports such as, javelin throwing (+95% over 76 years), pole vault (+86% in 94 years), and 1-h track cycling (+221% in 111 years; Haake, 2009 ). Similarly, such types of longitudinal data analysis may also be useful from an anti-doping perspective. In this regard, it has previously been shown that yearly world best performances increase with the emergence of new potent doping agents, such as anabolic steroids or EPO (Schumacher and Pottgiesser, 2009 ). Conversely, when new anti-doping tests are implemented, overall world best performances decrease as the effects of certain performance enhancing drugs become detectable, and are therefore avoided by athletes (Schumacher and Pottgiesser, 2009 ). These findings raise the possibility that performance monitoring can be useful for anti-doping efforts. As the aim of any doping regime is to improve sporting performance, it has been suggested performance data, in the form of an Athlete Performance Module (APM), may be useful in strengthening the sensitivity and applicability of the current Athlete Biological Passport (ABP) in the fight against doping in sports (Schumacher and Pottgiesser, 2009 ). However, there is a general view that performance biometrics alone are not sufficient evidence to establish doping, and as such, cannot demonstrate the use of a prohibited substance in accordance with the World Anti-Doping Code (Article 2.2). Even though sudden increases in performance can be caused by reasons other than doping (e.g., improved training or nutritional strategies), such observations may nevertheless provide worthwhile information in order to trigger targeted anti-doping tests of specific athletes (Iljukov et al., 2018 ). In addition, whilst not sufficient to convict an athlete for doping, an atypical individual performance profile may also be useful as corroborative evidence in, for example, an ABP case. However, to date, the use of performance data for anti-doping purposes by National Anti-Doping Organizations (NADOs) and International Federations (IFs) remains low. The need for robust performance data Even though access to performance data is growing, data quality, and accessibility remain important barriers to overcome, especially as differences exist across sports and levels of competition. For example, performance results and rankings are often available for top-level international events, but less so at more regional and national levels. This is important for the use of performance data in anti-doping given that mostly a change in performance, rather than the absolute level of performance may be an indicator of doping. Therefore, the availability of data for longitudinal tracking of athletes over the course of their careers is critical to identify an individual's performance progress. As such, a key component of this longitudinal monitoring is to be able to differentiate between “normal” increases in performance caused by maturation and training, from an “unnatural” improvement caused by doping. A lack of available data concerning performance development and variability therefore makes it difficult to interpret an individual athlete's performance changes, and whether they are “realistic” or not. From the limited studies that have investigated the within-athlete variability of performance, it is apparent that elite athlete individual variation of performance over a season in so-called Centimeter-Gram-Second (CGS) sports appears to be relatively small, with for example, the coefficient of variation ranging from 1.1 to 1.4% (90% CI: 1.0–1.6%) in track and field athletics (Malcata and Hopkins, 2014 ). Moreover, the between season variability in performance also appears relatively stable, for example coefficient of variations as low as 1% (90% CI: 0.9–1.1%) have been reported for elite rowing athletes (Smith and Hopkins, 2011 ). Thus, the priority for the development of an APM should be the collection of sport specific performance data, together with the identification of potential confounding factors affecting this data (e.g., pacing, tactics, environmental conditions etc.). Research is required in order to develop an evidence basis for “normal” seasonal variations and longitudinal changes in performance across sports. Moreover, there is a need to identify the typical rates of performances increases in sports as athletes' transition across junior categories to the elite rankings, as well as the inevitable decline in performance with aging (Berthelot et al., 2012 ). The actual performance metric(s) that should be used in an APM is
机译:近年来,体育领域中信息技术的使用已大大增加。这些数据和信息有可能对体育表现及其相关科学的性质产生重大影响。例如,对运动成绩数据的回顾分析提供了识别各种技术进步和规则变化对世界纪录运动成绩的影响的可能性,例如标枪投掷(76年内增加95%),撑竿跳高(+ 86%)。 94年内)和1小时单车追踪(111年内+ 221%; Haake,2009年)。类似地,从反掺杂的角度来看,这种类型的纵向数据分析也可能是有用的。在这方面,以前的研究表明,随着新的强效掺杂剂(如合成代谢类固醇或EPO)的出现,年度最佳性能会提高(Schumacher和Pottgiesser,2009年)。相反,当实施新的反兴奋剂测试时,由于某些性能增强药物的作用变得可检测,因此总体上全球最佳性能会下降,因此运动员会避免使用(Schumacher和Pottgiesser,2009)。这些发现提高了性能监测对反兴奋剂有用的可能性。由于任何兴奋剂制度的目的都是为了改善运动成绩,因此有人建议以运动员成绩模块(APM)的形式提供成绩数据,可能有助于增强当前运动员生物护照(ABP)的敏感性和适用性反对在体育运动中使用兴奋剂(Schumacher and Pottgiesser,2009)。但是,有一种普遍的观点认为,仅性能生物识别技术还不足以建立兴奋剂,因此不能证明根据《世界反兴奋剂法典》(第2.2条)使用了禁用物质。即使由于兴奋剂以外的其他原因(例如改进的训练或营养策略)可能导致成绩突然提高,但此类观察结果仍可能提供有价值的信息,以触发针对特定运动员的针对性的反兴奋剂测试(Iljukov等人,2018年) )。另外,尽管不足以定罪运动员使用兴奋剂定罪,但非典型的个人成绩档案也可作为佐证,例如在ABP案中。但是,迄今为止,国家反兴奋剂组织(NADO)和国际联合会(IF)将性能数据用于反兴奋剂的情况仍然很少。对健壮的绩效数据的需求尽管对绩效数据的访问日益增长,但数据质量和可访问性仍然是要克服的重要障碍,尤其是在运动和竞赛水平之间存在差异时。例如,绩效结果和排名通常可用于顶级国际活动,而在区域和国家级则更是如此。这对于在反掺杂中使用性能数据非常重要,因为性能的大部分变化(而不是绝对的性能水平)可能是掺杂的指标。因此,在运动员职业生涯中纵向追踪运动员的数据的可用性对于确定个人的成绩进步至关重要。这样,纵向监测的关键组成部分是能够区分由成熟和训练引起的性能“正常”提高与由掺杂引起的“非自然”提高之间的区别。因此,由于缺乏有关表现发展和可变性的可用数据,因此难以解释单个运动员的表现变化以及这些变化是否“现实”。从调查运动员内部表现变化的有限研究来看,很明显,在所谓的厘米-秒(CGS)运动中,一个赛季中优秀运动员的个人表现变化相对较小,例如,田径田径运动的变异系数范围为1.1至1.4%(90%CI:1.0–1.6%)(Malcata和Hopkins,2014年)。此外,各个赛季之间的表现差异也相对稳定,例如,据报道,精英赛艇运动员的变异系数可低至1%(90%CI:0.9–1.1%)(Smith和Hopkins,2011年)。因此,制定APM的优先事项应是收集特定于运动的表现数据,并确定影响该数据的潜在混杂因素(例如,起搏,战术,环境条件等)。需要进行研究,以便为整个运动中“正常”的季节性变化和性能的纵向变化建立证据基础。此外,有必要确定典型的运动成绩增长率,因为运动员从初级类别过渡到精英等级,并且随着年龄的增长不可避免地会出现性能下降(Berthelot等人,2012年)。 APM中应使用的实际性能指标是

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号