首页> 外文期刊>Frontiers in Immunology >Editorial: Memory T Cells: Effectors, Regulators, and Implications for Transplant Tolerance
【24h】

Editorial: Memory T Cells: Effectors, Regulators, and Implications for Transplant Tolerance

机译:社论:记忆T细胞:效应子,调节子和对移植耐受性的影响

获取原文
           

摘要

The Editorial on the Research Topic Memory T Cells: Effectors, Regulators, and Implications for Transplant Tolerance Memory T-cells respond to previously encountered antigens more rapidly and vigorously than their naive counterparts. They are divided into three subsets: central memory, effector memory, and tissue-resident memory T-cells. They are somewhat resistant to immunosuppressive treatments and are generally believed to be a threat to transplant survival. However, mounting evidence has demonstrated that memory CD8~(+)CD122~(+)T-cells with central memory cell phenotypes (CD45RA~(?)CD44~(high)CD62L~(high)CCR7~(+)) can regulate T-cell homeostasis and suppress both autoimmune and alloimmune responses. Therefore, memory T-cells, especially CD8~(+)CD122~(+)T-cells, may respond as either aggressive memory or regulatory T-cells (Treg). This research topic may shed light on when they act as memory versus Treg cells, and how to target memory T-cells or otherwise utilize memory-like Tregs to promote long-term allograft survival. Memory T-cells are considered to be a major barrier to long-term transplant survival or tolerance ( 1 ). Targeting allospecific T-cell memory appears to be required for transplant tolerance induction. Then, the question is whether blocking conventional T-cell costimulation would inhibit memory T-cell responses. Previous studies have shown that memory T-cells are resistant to CD40/CD154 costimulatory blockade ( 2 , 3 ). It is also generally accepted that B7-CD28 costimulation is not required for memory T-cell activation ( 4 ). They are either less dependent on or totally independent of CD28 costimulation ( 5 , 6 ). Therefore, it is likely that blocking B7–CD28 is insufficient for preventing allograft rejection in the face of memory T-cells. Perhaps that is why a high incidence of acute rejection of renal allografts, despite CTLA4-Ig treatments, has occurred in clinic due to the cross-reactivity of memory T-cells, derived from pathogen-specific immune responses, with an alloantigen ( 7 ). However, recent studies using animal models have shown that optimal elaboration of secondary T-cell responses is dependent on B7–CD28 interactions in the context of anti-infectious immunity ( Ville et al. ). Interestingly, selectively targeting CD28 with FR104 is more potent in suppression of allograft rejection than targeting CD80/86 with CTLA4-Ig ( Ville et al. ), suggesting that selective blockade of CD28 signaling alone presents an advantage of allowing immunoregulatory signals mediated by CTLA4. Furthermore, blocking OX-40 costimulatory signal prolongs secondary heart allograft survival in the presence of CD40/CD40L and LFA-1/ICAM-1 blockade ( 8 ), indicating that additional blockade of OX-40 signaling is required for abrogating memory T cell responses. Memory T-cells can rapidly trigger alloimmune responses ( 9 ). It has been known that early infiltration of CD8~(+)memory T-cells into allografts facilitates allograft rejection and presents a hurdle to achieving long-term allograft survival ( 10 – 12 ). Signaling pathways for memory T-cell migration to an inflamed graft include G protein-coupled chemokine receptor signaling and cognate antigen-engaged TCR signaling as both signals trigger downstream integrin activation ( Zhang and Lakkis ). Interestingly, cognate antigen presence is necessary for driving antigen-specific memory T-cell migration into the peripheral tissue even without acute inflammation ( 13 ). Blocking integrin with anti-LFA-1 or anti-VLA-4 mAb prevents memory T-cell migration to a graft, attenuates alloreactive memory T-cell recall responses, and suppresses allograft rejection ( 14 , 15 ). However, indiscriminately blocking LFA-1, though preventing memory and effector T-cell migration, increases the chance of developing post-transplant EBV-associated lymphoproliferative diseases while targeting VLA-4 may result in reactivation of fatal infections ( 16 ). Therefore, it is important to seek new strategies, instead of the universal blockade of major chemokines, to prevent donor-specific memory T-cell migration without increasing the risk of infections. One potential strategy to do so is to target the inside-out signaling pathway downstream of the TCR but not chemokine receptors ( Zhang and Lakkis ), such as SKAP1, leading to the suppression of antigen-driven but not chemokine-driven memory T-cell migration to a graft. Recently, there has been a renewed interest in immune metabolism in CD8~(+)T-cells. Their proliferation and function require a metabolic adaptation to meet their needs for energy and biosynthesis ( Yap et al. ). Activated CD8~(+)T-cells reprogram their metabolism from OXPHOS to aerobic glycolysis and glutaminolysis ( 17 ), supporting their rapid growth with sufficient energy as well as metabolic intermediates. Since glycolysis and glutaminolysis are two major metabolic pathways that are essential for CD8~(+)effector cell function, blocking metabolic pathways could lead t
机译:研究主题的社论记忆T细胞:效应子,调节剂和对移植耐受性的影响记忆T细胞比幼稚的T细胞对先前遇到的抗原的反应更为迅速和有力。它们分为三个子集:中央记忆,效应记忆和组织驻留记忆T细胞。它们对免疫抑制疗法有一定的抵抗力,通常被认为对移植物存活构成威胁。然而,越来越多的证据表明具有中央记忆细胞表型(CD45RA〜(?)CD44〜(high)CD62L〜(high)CCR7〜(+))的记忆CD8〜(+)CD122〜(+)T细胞可以调节T细胞稳态并抑制自身免疫和同种免疫反应。因此,记忆T细胞,尤其是CD8〜(+)CD122〜(+)T细胞,可能会作为攻击性记忆或调节性T细胞(Treg)作出反应。该研究主题可能会揭示它们何时充当记忆对Treg细胞的作用,以及如何靶向记忆T细胞或如何利用类似记忆的Treg促进同种异体移植的长期存活。记忆性T细胞被认为是长期移植存活或耐受性的主要障碍(1)。诱导移植耐受性似乎需要靶向同种异体T细胞记忆。然后,问题是阻止传统的T细胞共刺激是否会抑制记忆T细胞响应。先前的研究表明,记忆性T细胞对CD40 / CD154共刺激封锁有抵抗力(2、3)。人们也普遍认为,记忆T细胞激活不需要B7-CD28共刺激(4)。它们要么较少依赖CD28,要么完全不依赖CD28共刺激(5、6)。因此,很可能阻断B7–CD28不足以防止面对记忆T细胞的同种异体移植排斥。也许这就是为什么尽管使用CTLA4-Ig进行治疗,但由于同种抗原引起的病原体特异性免疫反应产生的记忆T细胞交叉反应,临床上仍然发生了急性肾移植排斥反应高发生率的原因(7) 。但是,最近使用动物模型进行的研究表明,在抗感染免疫的背景下,最佳的次级T细胞应答机制取决于B7-CD28的相互作用(Ville等)。有趣的是,用FR104选择性靶向CD28比用CTLA4-Ig靶向CD80 / 86更能有效抑制同种异体移植排斥(Ville et al。),这表明仅CD28信号的选择性阻断具有允许CTLA4介导的免疫调节信号的优势。此外,在存在CD40 / CD40L和LFA-1 / ICAM-1阻滞剂的情况下,阻断OX-40协同刺激信号可延长继发性心脏移植的存活时间(8),这表明要废除记忆T细胞应答,还需要进一步阻断OX-40信号传导。 。记忆性T细胞可以迅速触发同种免疫反应(9)。众所周知,CD8〜(+)记忆性T细胞的早期浸润会促进同种异体移植的排斥,并为实现同种异体移植的长期存活提供了障碍(10-12)。用于记忆T细胞迁移至发炎的移植物的信号传导途径包括G蛋白偶联趋化因子受体信号传导和同源抗原结合的TCR信号传导,因为这两个信号均触发下游整联蛋白激活(Zhang和Lakkis)。有趣的是,即使没有急性炎症,同源抗原的存在也是驱动抗原特异性记忆T细胞向外周组织迁移所必需的(13)。用抗LFA-1或抗VLA-4 mAb阻断整联蛋白可防止记忆T细胞迁移至移植物,减弱同种反应性记忆T细胞的召回反应,并抑制同种异体移植排斥(14、15)。然而,尽管阻止了记忆和效应T细胞的迁移,但无限制地阻断LFA-1,却增加了移植后EBV相关的淋巴增生性疾病发生的机会,而靶向VLA-4则可能导致致命感染的重新激活(16)。因此,重要的是寻找新的策略,而不是普遍阻滞主要的趋化因子,以防止供体特异性记忆T细胞迁移而不增加感染的风险。这样做的一种潜在策略是针对TCR下游的由内而外的信号通路,而不是趋化因子受体(Zhang和Lakkis),例如SKAP1,从而抑制抗原驱动但趋化因子驱动的记忆T细胞被抑制迁移到嫁接。最近,人们对CD8〜(+)T细胞的免疫代谢产生了新的兴趣。它们的增殖和功能需要代谢适应才能满足其对能量和生物合成的需求(Yap等人)。活化的CD8〜(+)T细胞将其代谢过程从OXPHOS重新编程为有氧糖酵解和谷氨酰胺分解(17),以足够的能量和代谢中间体支持其快速生长。由于糖酵解和谷氨酰胺分解是CD8〜(+)效应细胞功能必不可少的两个主要代谢途径,因此阻断代谢途径可能导致

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号