首页> 外文期刊>Frontiers in Marine Science >Investigating Particle Size-Flux Relationships and the Biological Pump Across a Range of Plankton Ecosystem States From Coastal to Oligotrophic
【24h】

Investigating Particle Size-Flux Relationships and the Biological Pump Across a Range of Plankton Ecosystem States From Coastal to Oligotrophic

机译:研究从沿海到贫营养的整个浮游生物生态系统状态下的粒径通量关系和生物泵

获取原文
获取外文期刊封面目录资料

摘要

Sinking particles transport organic carbon produced in the surface ocean to the ocean interior, leading to net storage of atmospheric CO2 in the deep ocean. The rapid growth of in situ imaging technology has the potential to revolutionize our understanding of particle flux attenuation in the ocean; however, estimating particle flux from particle size and abundance (measured directly by in situ cameras) is challenging. Sinking rates are dependent on several factors, including particle excess density and porosity, which vary based on particle origin and type. Additionally, particle characteristics are transformed while sinking. We compare optically-measured particle size spectra profiles (Underwater Vision Profiler 5, UVP) with contemporaneous measurements of particle flux made using sediment traps and 234Th:238U disequilibrium on six process cruises from the California Current Ecosystem (CCE) LTER Program. These measurements allow us to assess the efficacy of using size-flux relationships to estimate fluxes from optical particle size measurements. We find that previously published parameterizations that estimate carbon flux from UVP profiles are a poor fit to direct flux measurements in the CCE. This discrepancy is found to result primarily from the important role of fecal pellets in particle flux. These pellets are primarily in a size range (i.e., 100 – 400 μm) that is not well-resolved as images by the UVP due to the resolution of the sensor. We develop a new, CCE-optimized algorithm for estimating carbon flux from UVP data in the southern California Current (Flux = ∑_(i=1)^x?〖n_i A〖d_i〗^B ?d_i 〗), with A = 13.45, B = 1.35, d = particle diameter (mm) and Flux in units of mg C m-2 d-1. We caution, however, that increased accuracy in flux estimates derived from optical instruments will require devices with greater resolution, the ability to differentiate fecal pellets from low porosity marine snow aggregates, and improved sampling of rapidly sinking fecal pellets. We also find that the particle size-flux relationships may be different within the euphotic zone than in the shallow twilight zone and hypothesize that the changing nature of sinking particles with depth must be considered when investigating the remineralization length scale of sinking particles in the ocean.
机译:下沉的颗粒将表层海洋中产生的有机碳输送到海洋内部,从而导致深海中大气二氧化碳的净存储。原位成像技术的飞速发展可能会彻底改变我们对海洋中粒子通量衰减的理解。然而,从颗粒大小和丰度(直接由原位相机测量)估算颗粒通量是一项挑战。下沉速率取决于几个因素,包括颗粒过量密度和孔隙率,这些因素会根据颗粒来源和类型而变化。此外,粒子特征在下沉时会发生变化。我们将光学测量的粒径谱图(Underwater Vision Profiler 5,UVP)与同时使用加利福尼亚现代生态系统(CCE)LTER计划的六个过程巡回过程中使用沉积物捕集器和234Th:238U不平衡进行的粒子通量测量进行了比较。这些测量使我们能够评估使用尺寸-通量关系从光学粒径测量中估算通量的功效。我们发现,以前发布的根据UVP曲线估算碳通量的参数设置不适合直接在CCE中进行通量测量。发现这种差异主要是由于粪便颗粒在颗粒通量中的重要作用所致。这些颗粒的尺寸范围(即100 – 400μm)主要由于传感器的分辨率而无法很好地被UVP分辨为图像。我们开发了一种新的,经过CCE优化的算法,用于根据南加州潮流中的UVP数据估算碳通量(通量= ∑_(i = 1)^ x?〖n_i A〖d_i〗^ B?d_i}),其中A = 13.45,B = 1.35,d =粒径(mm)和通量,单位mg C m-2 d-1。但是,我们提醒您,从光学仪器获得的通量估计值中提高准确性将需要具有更高分辨率的设备,将粪便颗粒与低孔隙度海洋积雪团分开的能力以及对快速下沉的粪便颗粒的采样的改进。我们还发现,在常光区内,颗粒尺寸与通量的关系可能与在浅暮光区中的不同,并且假设在研究海洋中沉降颗粒的再矿化长度尺度时,必须考虑沉降颗粒随深度的变化性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号