首页> 外文期刊>Frontiers in Marine Science >Phytoplankton σPSII and Excitation Dissipation; Implications for estimates of primary productivity
【24h】

Phytoplankton σPSII and Excitation Dissipation; Implications for estimates of primary productivity

机译:浮游植物σPSII与激发耗散;对估算初级生产力的影响

获取原文
           

摘要

The effective absorption cross section for photochemistry of Photosystem II in the light (σPSII′) comprises the probability of light capture by Photosystem II and the quantum yield for subsequent photochemistry. σPSII′ is used to model photosynthesis and aquatic productivity. Phytoplankters regulate σPSII′ to mitigate over- or under-excitation of Photosystem II. We used diverse phytoplankton taxa to compare short term changes in σPSII′ with the induction of the yield of non-photochemical quenching (YNPQ) of chlorophyll fluorescence, a measure of regulated excitation dissipation. In two picocyanobacteria σPSII? showed no decline upon induction of moderate YNPQ, above light levels sufficient for saturation of electron transport. In the eukaryotic chl a/b Ostreococcus and the chl a/c diatom Thalassiosira, induction of non-photochemical quenching was stronger after growth under saturating light, an acclimation attributable to increased xanthophyll cycle pigment content. Across short and longer-term light histories to induce or relax regulatory processes Ostreococcus and Thalassiosira showed proportional variations between the level of YNPQ and the down regulation of σPSII?. The proportional down regulation of σPSII? was, however, significantly smaller than the amplitude of YNPQ induction. For the eukaryotes we can predict changes in σPSII?, useful for modelling electron transport, productivity and acclimation, from measures of YNPQ, which are accessible from fluorescence yield measures that do not include σPSII′. This useful relation, however, does not extend to the tested prokaryotes, possibly as a result of differential violations of the rate constant assumptions that underlie the calculated YNPQ parameter.
机译:光中光系统II的光化学有效吸收截面(σPSII')包括光系统II捕获光的概率和后续光化学的量子产率。 σPSII'用于模拟光合作用和水生生产力。浮游植物调节σPSII'以减轻光系统II的过度或不足激发。我们使用了多种浮游植物类群,比较了σPSII'的短期变化与叶绿素荧光的非光化学猝灭(YNPQ)产量的诱导,这是调节激发耗散的一种量度。在两个微蓝细菌σPSII中?在中度YNPQ的诱导下没有显示出下降,高于足以使电子传输饱和的光水平。在真核chl a / b球菌和chl a / c硅藻Thalassiosira中,在饱和光下生长后,非光化学猝灭的诱导作用更强,这归因于叶黄素循环色素含量的增加。在短期和长期的光历史中,通过诱导或放松调节过程,Ostreococcus和Thalassiosira表现出YNPQ水平与σPSII?下调之间的比例变化。 σPSII的比例下调?但是,它明显小于YNPQ感应的幅度。对于真核生物,我们可以通过YNPQ的测量值预测σPSII?的变化,可用于模拟电子传输,生产率和适应性,这可以从不包含σPSII'的荧光产量测量中获得。但是,这种有用的关系不会扩展到受测原核生物,这可能是由于差分违背了作为计算得出的YNPQ参数基础的速率常数假设的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号