首页> 外文期刊>Frontiers in Neural Circuits >Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks
【24h】

Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

机译:固有的细胞特性和连通性密度决定了随机连接的抑制性神经网络中的可变聚类模式

获取原文
       

摘要

The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics compared to those in networks of Type I or Type II neurons. To understand these results, we compute neuronal PRCs calculated with a perturbation matching the profile of the synaptic current in our networks. Differences in profiles of these PRCs across the different neuron types reveal mechanisms underlying the divergent network dynamics.
机译:海马和皮层中过多的抑制性中间神经元通过聚集和同步细胞放电,在产生节律性活动中起关键作用。我们的模拟结果表明,神经元的固有细胞特性和网络连通性程度都会影响随机连接的异质抑制网络中表现出的聚集动力学特性。我们通过神经元的电流频率关系(IF曲线)和相位响应曲线(PRC)来量化固有的细胞特性,这是对神经元激发周期各个阶段的扰动如何影响随后的尖峰定时的一种度量。我们在兴奋性和PRC谱中分析具有I型或II型特性的神经元网络的网络爆发特性; I类PRCs严格显示相位超前和中频曲线,在触发阈值处的频率任意接近零,而II类PRCs同时显示相位超前和时延,而IF曲线在阈值处具有非零频率。考虑具有或不具有M型适应电流而产生其特性的II型神经元。我们分析了不同水平的细胞异质性下的网络动力学,并且随着固有细胞激发频率和突触抑制衰减时间尺度的变化。这些网络展现出的许多动态与神经元间网络伽玛(ING)机制的预测以及所有连接网络中的结果均存在差异。我们的结果表明,随机连接的I型神经元网络会同步成单个活动神经元簇,而II型神经元网络会组织成两个相互排斥的簇,这些簇由细胞的内在放电频率隔开。根据网络参数,包含适应电流的II型神经元网络的行为类似于I型或II型神经元的网络。然而,与I型或II型神经元网络相比,适应电流在簇动力学方面产生差异。为了理解这些结果,我们计算神经元PRCs,其扰动与网络中突触电流的分布相匹配。这些PRCS在不同神经元类型之间的轮廓差异揭示了潜在的网络动态机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号