首页> 外文期刊>Frontiers in Neural Circuits >Commentary: Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity
【24h】

Commentary: Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity

机译:评论:在节律性运动网络活动期间,脊柱运动神经元中的突触兴奋与突触抑制互为替代,并且通过向外矫正得到平衡

获取原文
           

摘要

In a recent study, Guzulaitis and Hounsgaard ( 2017 ) (GH2017) used whole cell voltage clamp (VC) on the reversal potential for inhibition or excitation to assess their synaptic currents (Johnston and Wu, 1995 ; Brette and Destexhe, 2012 ). GH2017 concluded that inhibition and excitation alternated during rhythmic scratching, and a voltage-dependent intrinsic conductance was masking this input such that it appeared as balanced excitation and inhibition in previous published work (Berg et al., 2007 ; Petersen et al., 2014 ). Nevertheless, this reasoning relies entirely on the validity of the clamp and, as we will see below, there is a clamp error, which complicates the interpretation of their data. Errors associated with voltage-clamp is a common problem as noted in previous reports (Spruston et al., 1993 ; Williams and Mitchell, 2008 ; Petersen, 2017 ). The membrane current (I) is composed of intrinsic, leak, excitatory and inhibitory currents with individual conductances and reversal potentials, which collectively form a membrane resistance ( R _( m )) and an equilibrium potential ( E _( m )). When recording these using a pipette electrode, its resistance ( R _( s )), sometimes called access or series resistance, is in series with R _( m )(Figure 1A ). When there is no electrode current the membrane potential V _( m )= E _( m ). However, during VC, a non-zero current introduces a drop in potential over R _( s ), which can only be partially compensated with the amplifier electronics (Brette and Destexhe, 2012 ). R _( s )therefore has an uncompensated part (blue, R _( us ), Figures 1A,B ), which generates an unaccounted drop in potential from the clamp potential ( V _( c )) proportional to the pipette current: (1) V m = V c ? I · R u s GH2017 report: “Voltage clamp (VC) experiments were performed on motoneurons when access resistance was low ( R _( a )< 20 MΩ) and possible to compensate by 60-80%.” This means that R _( us )= 20 ? 40% · 20 MΩ = 4–8 MΩ. When clamping at 0 mV the applied current is likely large. The authors do not report I for their clamp experiments (Figures 8–9), but their IV-plots suggest up to 10 nA (Figures 5E, 6). Hence, when trying to clamp at 0 mV, V _( m )is really ?10 nA ·4 MΩ = ?40 mV with 80% R _( s )-compensation. Figure 1 Caveats using voltage clamp to resolve excitation and inhibition. (A) Whole-cell VC can be decomposed into electrical components including the pipette series resistance ( R _( s )). (B) Partial compensation for R _( s )introduces a disparity between clamped potential ( V _( c )) and V _( m )due to uncompensated resistance (red). (C) Reciprocal model for rhythmic V _( m )has alternating E/I. ( R _( m )= 20 MΩ , E _( leak )= ?70 mV ). (D) Balanced model has concurrent E/I and also rhythmic V _( m ). (E) Outward currents measured using VC is assumed to be inhibition when clamping 0mV (black). The actual clamp is at ?30 mV (red). (F) Balanced E/I spuriously appears as reciprocal when the actual clamp is below synaptic reversal potential (“same phase” cf. red in F and black in E ). (G) VC-recording of a putative motoneuron with blocked spikes (with intracellular QX314) at different holding potentials (gray: current, red: mean, blue: nerve). Reversal of phase (arrow) is consistent with the balanced scheme (F) although with a smaller out-of-phase inhibition (indicated). (H) Blocking inhibition (strychnine) increases firing rate also consistent with the balanced scheme. (G) provided by A. Alaburda (current levels indicated, right) and (H) adapted with permission (Vestergaard and Berg, 2015 ). To better understand the issue, we consider steady-state where all current passes through the resistors. From Ohm's law the voltage drop over R _( us )is V _( m )? V _( c )= I · R _( us ). Similarly, the voltage drop over the membrane is E _( m )? V _( m )= I · R _( m ). Combining these we can eliminate I and isolate V _( m ): (2) V m = V c R m + E m R u s R m + R u s Hence, for a good clamp ( V _( m )≈ V _( c )) it is required that R _( m )? R _( us ). GH2017 report a membrane conductance of 49.2 nS (Figure 5B), which gives R _( m )= 20 MΩ . With these values ( E _( m )= ?70 mV ) clamping at 0 mV gives (3) V m = 0 ? 70 m V · 8 M Ω 28 M Ω = ? 20 m V Whereas R _( us )is assumed constant, R _( m )may change dramatically due to synaptic and intrinsic conductance. GH2017 nicely document a nonlinearity starting at ?30 mV (Figures 5, 6), and a conductance of 314 nS ( R _( m )= 3.2 MΩ ). Here, the low R _( m )even becomes smaller than R _( us )and therefore the clamp deteriorates further: (4) V m = 0 ? 70 m V · 8 M Ω 11.2 M Ω = ? 50 m V The clamp is unlikely to be this bad, since the reduction in R _( m )occurs above ?50mV. Also, E _( m ), which we assume constant, may depolarize due to change in the weighted average (Figure 1B ), which mitigates the effect. The exact level of clamping of V _( m )with ( V _( c )= 0mV) is difficult to estimate and may change in time. A reasonable guess is
机译:在最近的研究中,Guzulaitis和Hounsgaard(2017)(GH2017)使用全细胞电压钳(VC)对抑制或激发的逆转电位来评估其突触电流(Johnston和Wu,1995; Brette和Destexhe,2012)。 GH2017得出结论,在有节奏的抓挠过程中抑制和激发交替发生,并且电压依赖性固有电导掩盖了此输入,因此在先前发表的工作中它表现为平衡的激发和抑制(Berg等,2007; Petersen等,2014)。 。然而,这种推理完全依赖于钳位的有效性,并且正如我们将在下面看到的那样,存在钳位错误,这使得其数据的解释变得复杂。如先前的报告所述(Spruston等人,1993; Williams和Mitchell,2008; Petersen,2017),与电压钳相关的错误是一个常见问题。膜电流(I)由固有电流,泄漏电流,兴奋性电流和抑制电流组成,具有单独的电导和逆转电位,共同形成膜电阻(R _(m))和平衡电位(E _(m))。当使用移液管电极记录这些电阻时,其电阻(R _(s))有时称为访问电阻或串联电阻,与R _(m)串联(图1A)。当没有电极电流时,膜电位V_(m)= E_(m)。但是,在VC期间,非零电流会导致R _(s)上的电势下降,而这只能通过放大器电子设备部分补偿(Brette和Destexhe,2012年)。因此R _(s)有一个未补偿的部分(蓝色,R _(us),图1A,B),它会从钳位电势(V _(c))产生与移液管电流成比例的未说明的电势下降: 1)V m = V c? I·R u的GH2017报告:“当访问电阻很低(R _(a)<20MΩ)且可能补偿60-80%时,对运动神经元进行电压钳位(VC)实验。”这意味着R _(us)= 20? 40%·20MΩ= 4–8MΩ。当钳位在0 mV时,施加的电流可能很大。作者没有报告其钳位实验的I(图8-9),但他们的IV曲线建议高达10 nA(图5E,6)。因此,当试图钳位在0 mV时,V _(m)实际上是?10 nA·4MΩ=?40 mV,具有80%的R _(s)补偿。图1使用电压钳解决激励和抑制的警告。 (A)全细胞VC可以分解为包括移液器串联电阻(R _(s))的电子元件。 (B)由于未补偿的电阻(红色),对R _(s)的部分补偿引入了钳位电势(V _(c))和V _(m)之间的差异。 (C)节奏V _(m)的倒数模型具有交替的E / I。 (R_(m)=20MΩ,E_(泄漏)=≥70mV)。 (D)平衡模型同时具有E / I和有节奏的V_(m)。 (E)钳位0mV(黑色)时,假定使用VC测量的外向电流被抑制。实际钳位为?30 mV(红色)。 (F)当实际钳位低于突触反转电位时(“ F”为红色,E为“黑色”),平衡的E / I虚假地显示为倒数。 (G)在不同的保持电位下(灰色:电流,红色:平均,蓝色:神经)带有尖峰受阻的推定运动神经元(带有细胞内QX314)的VC记录。相位反转(箭头)与平衡方案(F)一致,尽管具有较小的异相抑制(指示)。 (H)阻滞抑制(士的宁)增加了发射率,也与平衡方案一致。 (G)由A. Alaburda提供(当前水平,右),(H)经许可改编(Vestergaard和Berg,2015年)。为了更好地理解该问题,我们考虑所有电流都流经电阻的稳态。根据欧姆定律,R _(us)上的电压降为V _(m)? V _(c)= I·R _(us)。同样,膜上的电压降为E _(m)? V_(m)= I·R_(m)。结合这些我们可以消除I并隔离V _(m):(2)V m = V c R m + E m R us R m + R us因此,对于良好的钳位(V _(m)≈V _( c))是否要求R _(m)? R _(我们)。 GH2017报告膜电导为49.2 nS(图5B),给出R_(m)= 20MΩ。利用这些值(E _(m)=?70 mV)钳位在0 mV时,得到(3)V m = 0? 70 m V·8 MΩ28 MΩ=? 20 m V假定R _(us)为常数,但R _(m)可能由于突触和固有电导而发生巨大变化。 GH2017很好地证明了非线性现象始于?30 mV(图5、6),电导为314 nS(R _(m)= 3.2MΩ)。在此,低R _(m)甚至变得小于R _(us),因此钳位进一步恶化:(4)V m = 0? 70 m V·8 MΩ11.2 MΩ=? 50 m V钳位不太可能这么糟糕,因为R _(m)的降低发生在?50mV以上。同样,我们假定为常数的E _(m)可能由于加权平均值的变化而去极化(图1B),从而减轻了影响。 (V _(c)= 0mV)时V _(m)的精确钳位电平很难估计,并且可能随时间变化。一个合理的猜测是

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号