...
首页> 外文期刊>Frontiers in Microbiology >Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol
【24h】

Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol

机译:社论:利用有用的根际微生物进行病原体和害虫生物防治

获取原文

摘要

Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects. Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions.This Research Topic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a) biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. Microbial volatiles and other compounds Roots are surrounded by a flow of molecules released by microorganisms. Some volatiles may affect growth through different mechanisms, such as biochemical signals eliciting local defense reactions or systemic resistance (Kai et al., 2007 ; Chung et al., 2016 ). Yi et al. studied the effects of 2,3-butanediol produced by a Bacillus subtilis isolate overexpressing the bud operon synthesis encoding genes. They showed that the isolate persisted on pepper roots more than the wild type, thereby interfering with colonization by fungi. Exudates from isolate pre-treated roots inhibited colonization by Trichoderma sp., by another B. subtilis strain, and by the soil-borne pathogen Ralstonia solanacearum . Application of 2,3-butanediol to roots followed by R. solanacearum exposure enhanced the expression of pathogenesis-related (PR) genes. The volatile triggered the secretion of root exudates modulating fitness of soil fungi and bacteria, thus acting as a plant defense inducer.Bacteria metabolism affects nutrient assimilation. Aziz et al. reported a new mechanism in the plant growth-promoting (PGP) Bacillus amyloliquefaciens GB03, which activates genes involved in sulfur assimilation and uptake by Arabidopsis . Other transcripts encoding for proteins involved in the biosynthesis of sulfur-rich aliphatic and indolic glucosinolates were also expressed. The enhanced sulfur assimilation increased plant glucosinolate biosynthesis, and conferred protection against the beet armyworm Spodoptera exigua .Bacterial metabolites may also protect plants by inhibiting herbivores (Mith?fer and Boland, 2012 ). Ganassi et al. reported that also fungal metabolites may have this effect, as shown by a Trichoderma citrinoviride isolate, interfering with feeding of the cereal aphid Rhopalosiphum padi . Different long-chain primary alcohols (LCOHs) showed a phagodeterrent effect restraining aphids from settling on treated leaves. The LCOHs, perceived through taste receptor neurons and effective at low concentrations, hold potential for insect control in synergy with other compounds. Lysobacter spp. may affect soil-borne pathogens through extracellular enzymes and other metabolites (Folman et al., 2003 ). Members of this genus appeared abundant in soil suppressive to the root pathogen Rhizoctonia solani . Some strains showed in vitro activity against R. solani and other phytopathogens such as Pythium ultimum, Aspergillus niger, Fusarium oxysporum , and Xanthomonas campestris . In soil, however, suppression of R. solani damping-off on sugar beet and cauliflower was low, and no PGP effect was found on sugar beet, cauliflower, onion and Arabidopsis thaliana , likely due to poor rhizosphere colonization. Antagonistic Lysobacter spp. are an important source of new enzymes and antimicrobial compounds, although their role in disease suppressiveness needs to be confirmed ( Gómez Expósito et al. ). Soil amendments The characterization of organic matter amendments enhancing biocontrol and influencing resident soil communities is a growing research field (Bailey and Lazarovits, 2003 ; Bonilla et al., 2012 ). Debode et al. studied the effect of chitin on lettuce growth and survival of pathogenic Escherichia coli O157:H7 and Salmonella enterica colonizing leaves. Chitin addition increased yields and reduced phyllosphere survival of both bacteria, increasing fungal and bacterial biomass in the rhizosphere. An increase was observed for bacterial genera Cellvibrio, Pedobacter, Dyadobacter , and Streptomyces and the fungi Lecanicillium and Mortierella . These taxa include species involved in biocontrol, PGP, nitrogen cycle, and chitin degradation, showing a potential for chitin-based amendments.A positive effect of amendments on soil microbial communities was reported by Vida et al. Composted almond shells elicited suppression of Rosellinia necatrix , causal agent of white root rot on avocado, increasing Proteobacteria and Ascomycota, and reducing Acidobacteria and Mortierellales.
机译:不断增长的人口趋势需要可持续技术来提高未来粮食生产的质量和产量。但是,在许多农业生态系统中,关于植物保护策略的不确定性。害虫,疾病和杂草受到化学物质的绝大多数控制,这些化学物质会危害健康并引起其他不良影响。因此,近年来,人们越来越关注控制措施。许多化学品在其可持续性方面受到质疑,并将被(或将被禁止)。依靠生物和低影响的解决方案研究了替代管理工具。此研究主题涉及微生物生物防治剂,与根相关的微生物群和根际网络。了解它们如何相互作用或对(a)生物环境线索的反应有助于产生有效和可持续的影响。在这方面,根际是研究的基本对象,因为它在植物生产力中的作用。微生物挥发物和其他化合物根被微生物释放的分子流包围。一些挥发物可能通过不同的机制影响生长,例如引起局部防御反应或系统抗性的生化信号(Kai等,2007; Chung等,2016)。 Yi等。研究了枯草芽孢杆菌分离物产生的2,3-丁二醇过表达芽操纵子合成编码基因的影响。他们表明,与野生型相比,分离株在胡椒根上的持久性更高,从而干扰了真菌的定殖。来自分离的预处理根的分泌物抑制了木霉菌,另一株枯草芽孢杆菌菌株以及土壤传播的病原体青枯菌(Ralstonia solanacearum)的定殖。在根部施用2,3-丁二醇,然后暴露青枯菌可增强发病相关基因(PR)的表达。挥发物触发了根系分泌物的分泌,从而调节了土壤真菌和细菌的适应性,从而起到了植物防御诱导剂的作用。细菌的代谢影响了养分的吸收。 Aziz等。报道了植物促淀粉芽孢杆菌GB03中的一种新的植物促生长机制,该机制激活了与拟南芥硫同化和吸收有关的基因。还表达了编码参与富硫脂族和吲哚芥子油苷生物合成的蛋白质的其他转录物。增强的硫同化作用增加了植物硫代芥子油苷的生物合成,并赋予了其对甜菜夜蛾夜蛾的保护作用。细菌代谢产物还可以通过抑制草食动物来保护植物(Mith?fer和Boland,2012年)。 Ganassi等。报道指出,真菌代谢产物也可能具有这种作用,如木霉木霉病毒分离株所示,干扰谷物蚜虫Rhopalosiphum padi的摄食。不同的长链伯醇(LCOH)表现出吞噬作用,可抑制蚜虫落在处理过的叶片上。通过味觉受体神经元感知并在低浓度下有效的LCOH与其他化合物协同作用具有控制昆虫的潜力。溶菌属。可能通过细胞外酶和其他代谢产物影响土壤传播的病原体(Folman等,2003)。该属的成员在土壤中表现出丰富的根瘤菌根瘤菌抑制力。一些菌株在体外表现出对茄形假单胞菌和其他植物病原体的活性,如腐霉菌,黑曲霉,尖孢镰刀菌和油菜黄单胞菌。然而,在土壤中,solani R. solani对甜菜和花椰菜的抑制作用很弱,并且没有发现对甜菜,花椰菜,洋葱和拟南芥的PGP效应,这可能是由于根际定植不良所致。拮抗溶杆菌属。尽管需要确认它们在抑制疾病中的作用,但它们还是新酶和抗菌化合物的重要来源(GómezExpósito等人)。土壤改良剂增强生物防治和影响居民土壤群落的有机物改良剂的表征是一个正在发展的研究领域(Bailey和Lazarovits,2003; Bonilla等,2012)。 Debode等。研究了几丁质对生菜大肠杆菌O157:H7和肠沙门氏菌定殖叶片生菜生长和存活的影响。几丁质的添加增加了两种细菌的​​产量并减少了它们在叶球体内的存活,从而增加了根际中的真菌和细菌生物量。观察到细菌属Cellvibrio,Pedobacter,Dyadobacter和Streptomyces以及真菌Lecanicillium和Mortierella的增加。这些分类群包括涉及生物防治,PGP,氮循环和甲壳质降解的物种,显示出基于甲壳质的修饰的潜力。堆肥的杏仁壳可抑制玫瑰茄(Rosellinia necatrix),鳄梨上白根腐烂的病原体,增加变形杆菌和子囊菌,并减少酸性细菌和线虫。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号