...
首页> 外文期刊>Frontiers in Microbiology >Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference
【24h】

Functional Redundancy in Perchlorate and Nitrate Electron Transport Chains and Rewiring Respiratory Pathways to Alter Terminal Electron Acceptor Preference

机译:高氯酸盐和硝酸盐电子传输链中的功能冗余,以及重新设计呼吸途径以改变末端电子受体偏好

获取原文

摘要

Most dissimilatory perchlorate reducing bacteria (DPRB) are also capable of respiratory nitrate reduction, and preferentially utilize nitrate over perchlorate as a terminal electron acceptor. The similar domain architectures and phylogenetic relatedness of the nitrate and perchlorate respiratory complexes suggests a common evolutionary history and a potential for functionally redundant electron carriers. In this study, we identify key genetic redundancies in the electron transfer pathways from the quinone pool(s) to the terminal nitrate and perchlorate reductases in Azospira suillum PS (hereafter referred to as PS). We show that the putative quinol dehydrogenases, (PcrQ and NapC) and the soluble cytochrome electron carriers (PcrO and NapO) are functionally redundant under anaerobic growth conditions. We demonstrate that, when grown diauxically with both nitrate and perchlorate, the endogenous expression of NapC and NapO during the nitrate reduction phase was sufficient to completely erase any growth defect in the perchlorate reduction phase caused by deletion of pcrQ and/or pcrO . We leveraged our understanding of these genetic redundancies to make PS mutants with altered electron acceptor preferences. Deletion of the periplasmic nitrate reductase catalytic subunit, napA , led to preferential utilization of perchlorate even in the presence of equimolar nitrate, and deletion of the electron carrier proteins napQ and napO , resulted in concurrent reduction of nitrate and perchlorate. Our results demonstrate that nitrate and perchlorate respiratory pathways in PS share key functionally redundant electron transfer proteins and that mutagenesis of these proteins can be utilized as a strategy to alter the preferential usage of nitrate over perchlorate.
机译:大多数异化高氯酸盐还原菌(DPRB)也能够呼吸减少硝酸盐,并优先利用硝酸盐而不是高氯酸盐作为末端电子受体。硝酸盐和高氯酸盐呼吸道复合物的相似结构域结构和系统发育相关性提示共同的进化史和功能上多余的电子载体的潜力。在这项研究中,我们确定了从苯醌池到苏氏细齿藻PS(以下称为PS)的末端硝酸盐和高氯酸盐还原酶的电子转移途径中的关键遗传冗余。我们表明推定的喹诺醇脱氢酶(PcrQ和NapC)和可溶性细胞色素电子载体(PcrO和NapO)在厌氧生长条件下是功能冗余的。我们证明,当与硝酸盐和高氯酸盐一起双生生长时,NapC和NapO在硝酸盐还原阶段的内源表达足以完全消除由于pcrQ和/或pcrO缺失引起的高氯酸盐还原阶段的任何生长缺陷。我们利用对这些遗传冗余的理解,制备了具有改变的电子受体偏好的PS突变体。删除周质硝酸还原酶催化亚基napA导致即使在等摩尔硝酸盐存在下优先利用高氯酸盐,以及删除电子载体蛋白napQ和napO,导致硝酸盐和高氯酸盐同时减少。我们的结果表明,PS中的硝酸盐和高氯酸盐呼吸途径共享关键的功能冗余电子转移蛋白,并且诱变这些蛋白可以用作改变硝酸盐优先于高氯酸盐使用的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号