首页> 外文期刊>Frontiers in Microbiology >Transcriptome and Zymogram Analyses Reveal a Cellobiose-Dose Related Reciprocal Regulatory Effect on Cellulase Synthesis in Cellulosilyticum ruminicola H1
【24h】

Transcriptome and Zymogram Analyses Reveal a Cellobiose-Dose Related Reciprocal Regulatory Effect on Cellulase Synthesis in Cellulosilyticum ruminicola H1

机译:转录组和谱图分析揭示了纤维二糖-剂量相关的对 Rulyticcola ruminicola H1中纤维素酶合成的相互调节作用。

获取原文
           

摘要

The rumen bacterium Cellulosilyticum ruminicola H1 efficiently hydrolyzes cellulose. To gain insights into the regulatory mechanisms of cellulase synthesis, comparative transcriptome analysis was conducted for cultures grown on 2% filter paper, 0.5 and 0.05% cellobiose, and 0.5% birchwood xylan. It was found that cellulose induced a majority of (hemi)cellulases, including 33 cellulases and a cellulosomal scaffoldin (1.3- to 22.7-fold); seven endoxylanases, two mannanases, and two pectatelyases (2- to 16-fold); and pyruvate formate-lyase (PFL, 1.5- to 7-fold). Noticeably, 3- and 2.5-fold increased transcription of a cellobiohydrolase and the cellulosomal scaffoldin precursor were detected in 0.05% than in 0.5% cellobiose. Consistently, 9- and 4-fold higher specific cellobiohydrolase activities were detected in the filter paper and 0.05% cellobiose culture. SDS- and native-PAGE zymograms of cellulose-enriched proteins from the filter paper culture displayed cellulase activities, and cellulolytic “complexes” were enriched from the filter paper- and 0.05% cellobiose-cultures, but not from the 0.5% cellobiose culture. LC-MS/MS identified the cellulosomal scaffoldin precursor in the “complexes” in addition to cellulase, hemicellulase, and PFL proteins. The addition of 0.5% cellobiose, but not 0.05% cellobiose remarkably inhibited strain H1 to degrade filter paper. Therefore, this work reveals a cellobiose-dose related regulatory mechanism of cellulase synthesis by lower for induction and higher for repression, which has extended our understanding of the regulation of microbial cellulase synthesis.
机译:瘤胃纤维状细小球菌H1有效地水解纤维素。为了深入了解纤维素酶合成的调控机制,对在2%滤纸,0.5%和0.05%纤维二糖和0.5%桦木木聚糖上生长的培养物进行了比较转录组分析。发现纤维素诱导了大多数(半)纤维素酶,包括33种纤维素酶和纤维素骨架支架蛋白(1.3-至22.7倍)。七个内切木聚糖酶,两个甘露聚糖酶和两个果胶酶(2至16倍);和丙酮酸甲酸裂解酶(PFL,1.5至7倍)。值得注意的是,检测到纤维二糖水解酶和纤维素骨架支架素前体的转录增加了3到2.5倍,而纤维二糖的检测增加了2.5倍。一致地,在滤纸和0.05%的纤维二糖培养物中检测到比纤维二糖水解酶高9和4倍的比活。滤纸培养物中富含纤维素的蛋白质的SDS和天然PAGE酶谱显示纤维素酶活性,而滤纸培养物和0.05%纤维二糖培养物中的纤维素分解“复合物”富集,但0.5%纤维二糖培养物中则没有。 LC-MS / MS还鉴定了纤维素酶,半纤维素酶和PFL蛋白之外的“复合物”中的纤维素骨架支架前体。添加0.5%的纤维二糖,而不添加0.05%的纤维二糖显着抑制菌株H1降解滤纸。因此,这项工作揭示了纤维素酶合成中与纤维素二糖-剂量相关的调节机制,从较低的诱导水平到较高的抑制水平,这扩展了我们对微生物纤维素酶合成调节的认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号