...
首页> 外文期刊>Frontiers in Ecology and Evolution >Studying Ecosystems With DNA Metabarcoding: Lessons From Biomonitoring of Aquatic Macroinvertebrates
【24h】

Studying Ecosystems With DNA Metabarcoding: Lessons From Biomonitoring of Aquatic Macroinvertebrates

机译:用DNA元条形码研究生态系统:水生大型无脊椎动物生物监测的经验教训

获取原文
   

获取外文期刊封面封底 >>

       

摘要

An ongoing challenge for ecological studies has been the collection of data with high precision and accuracy at a suitable scale to detect and manage critical global change processes. A major hurdle has been the time-consuming and challenging process of sorting and identification of organisms, but the rapid development of DNA metabarcoding as a biodiversity observation tool provides a potential solution. As high-throughput sequencing becomes more rapid and cost-effective, a ‘big data’ revolution is anticipated, based on higher and more accurate taxonomic resolution, more efficient detection, and greater sample processing capacity. These advances have the potential to amplify the power of ecological studies to detect change and diagnose its cause, through a methodology termed 'Biomonitoring 2.0'. Despite its promise, the unfamiliar terminology and pace of development in high-throughput sequencing technologies has contributed to a growing concern that an unproven technology is supplanting tried and tested approaches, lowering trust among potential users, and reducing uptake by ecologists and environmental management practitioners. While it is reasonable to exercise caution, we argue that any criticism of new methods must also acknowledge the shortcomings and lower capacity of current observation methods. Broader understanding of the statistical properties of metabarcoding data will help ecologists to design, test and review evidence for new hypotheses. We highlight the uncertainties and challenges underlying DNA metabarcoding and traditional methods for compositional analysis, specifically comparing the interpretation of otherwise identical bulk-community samples of freshwater benthic invertebrates. We explore how taxonomic resolution, sample similarity, taxon misidentification, and taxon abundance affect the statistical properties of these samples, but recognize these issues are relevant to applications across all ecosystem types. In conclusion, metabarcoding has the capacity to improve the quality and utility of ecological data, and consequently the quality of new research and efficacy of management responses.
机译:生态学研究的一个持续挑战是以适当的规模收集高精度和准确性的数据以检测和管理关键的全球变化过程。一个主要障碍是耗时且富挑战性的生物分类和鉴定过程,但是DNA元条形码作为生物多样性观察工具的迅速发展提供了一种潜在的解决方案。随着高通量测序变得更加快速和具有成本效益,基于更高,更准确的分类学分辨率,更有效的检测和更大的样品处理能力,预计将发生“大数据”革命。这些进步有可能通过一种称为“生物监测2.0”的方法,增强生态学研究发现变化并诊断其原因的力量。尽管有希望,但高通量测序技术的术语和发展速度已引起越来越多的关注,即未经证实的技术正在取代久经考验的方法,从而降低了潜在用户之间的信任度,并减少了生态学家和环境管理从业者的使用。尽管谨慎行事是合理的,但我们认为,对新方法的任何批评也必须承认当前观察方法的缺​​点和能力不足。对元条形码数据的统计特性的更广泛理解将有助于生态学家设计,测试和审查新假设的证据。我们重点介绍了DNA元条形码和组成分析的传统方法所面临的不确定性和挑战,特别是比较了淡水底栖无脊椎动物的其他相同的大块样本的解释。我们探索了分类学分辨率,样本相似性,分类单元错误识别和分类单元丰度如何影响这些样本的统计特性,但是认识到这些问题与所有生态系统类型的应用相关。总之,元条形码具有改善生态数据的质量和效用的能力,因此可以提高新研究的质量和管理响应的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号