首页> 外文期刊>Frontiers in Computational Neuroscience >Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning
【24h】

Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning

机译:海马的计算特性通过分层强化学习提高了目标导向觅食的效率

获取原文
       

摘要

The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, “forward sweeps” through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks.
机译:人们认为哺乳动物的大脑使用一种基于模型的强化学习(MBRL)来指导“目标导向”的行为,其中动物考虑目标并制定计划以获取所需的结果。但是,传统的MBRL算法不能完全说明动物快速适应环境变化或学习多种复杂任务的能力。他们还需要大量的计算,这表明目标导向的行为在认知上是昂贵的。我们在此提出,海马中处理的关键特征支持用于空间导航的灵活MBRL机制,该机制计算效率高并且可以快速适应变化。我们通过实现一个计算MBRL框架来研究此思想,该框架结合了受海马体计算属性启发的功能:空间的分层表示,通过未来空间轨迹的“前掠”以及上下文驱动的位置单元重映射。我们发现,空间的分层抽象极大地降低了适应不断变化的环境条件所需的计算负荷(思想上的工作量),并允许有效解决大型问题。它还允许从高水平获得的抽象知识来指导对新障碍的适应。此外,上下文驱动的重映射机制允许学习和存储多个任务。在我们的计算框架中模拟背侧或腹侧海马损伤定性地再现了在具有类似损伤的啮齿动物中观察到的行为缺陷。因此,该框架可以体现大脑如何组织基于模型的RL以有效解决导航和其他困难任务的关键特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号