首页> 外文期刊>Frontiers in Digital Humanities >Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)
【24h】

Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

机译:使用电子背散射衍射(EBSD)区分化石生物中的生物控制的钙质生物矿化作用。

获取原文
获取外文期刊封面目录资料

摘要

Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a a??wastebasket taxona??, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We propose that the occurrence of a strong misorientation relationship between adjacent crystals with misorientation axes clustering around the c-axis can be used as a proxy for the degree of control exerted by an organism on its mineralized structures. Therefore, precisely constrained distributions of misorientations (misorientation angle and misorientation axis) may be used to identify BCM in otherwise problematic fossils and can be used to ground-truth the cyanobacterial affinities commonly proposed for problematic extinct organisms.
机译:尽管如今碳酸盐沉淀的蓝细菌在水生生态系统中无处不在,但在地质记录中用于识别它们的标准是主观的,并且很少可测试。蓝细菌和真核生物在生物矿化方式上的差异(即生物诱导钙化(BIM)与生物控制钙化(BCM))导致不同的晶体结构,可以用作测试蓝细菌亲和力的标准。蓝细菌通常用作“废纸tax分类”,并分配了各种微化石。缺乏可验证的蓝细菌鉴定标准可能会严重影响其化石记录。我们采用电子背散射衍射(EBSD)来研究在古生代海洋生态系统中分布的两个微问题的钙质骨架的结构:Rothpletzella(假设是蓝细菌)和不安全的sedis微生物Allonema。我们使用钙质三叶虫壳作为BCM参考。 Allonema的矿化结构具有与生物体表面垂直的针状晶体的简单单层结构。这些晶体的c轴平行于伸长率,因此垂直于生物体的表面。 EBSD极图和取向错误的轴分布显示出c轴周围的纤维织构具有很小的变化程度(最大30°),表明结构高度有序。在三叶虫壳中发现了类似的图案。这种结构可以排除生物诱导的矿化作用,并将其作为Allonema中壳形成的机制。在Rothpletzella中,微晶鞘的c轴与Allonema相比显示出更宽的簇集,但仍显示出倾向于垂直于生物体表面的晶体。相邻晶体的取向差轴显示出近似随机的分布。罗氏杆菌还与现存的蓝细菌具有相似的形态。我们提出,具有错位轴围绕c轴聚集的相邻晶体之间强烈的错位关系的出现可以用作生物体对其矿化结构施加控制程度的代理。因此,可以精确地限制取向错误的分布(取向错误的角度和取向错误的轴线)来识别原本有问题的化石中的BCM,并可以用于对存在问题的灭绝生物通常提出的蓝细菌亲和力进行研讨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号