...
首页> 外文期刊>Frontiers in Computational Neuroscience >Non-invasive Decoding of the Motoneurons: A Guided Source Separation Method Based on Convolution Kernel Compensation With Clustered Initial Points
【24h】

Non-invasive Decoding of the Motoneurons: A Guided Source Separation Method Based on Convolution Kernel Compensation With Clustered Initial Points

机译:运动神经元的非侵入性解码:基于带聚集初始点的卷积核补偿的引导源分离方法

获取原文
           

摘要

Despite the progress in understanding of neural codes, the studies of the cortico-muscular coupling still largely rely on interferential electromyographic (EMG) signal or its rectification for the assessment of motor neuron pool behavior. This assessment is non-trivial and should be used with precaution. Direct analysis of neural codes by decomposing the EMG, also known as neural decoding, is an alternative to EMG amplitude estimation. In this study, we propose a fully-deterministic hybrid surface EMG (sEMG) decomposition approach that combines the advantages of both template-based and Blind Source Separation (BSS) decomposition approaches, a.k.a. guided source separation (GSS), to identify motor unit (MU) firing patterns. We use the single-pass density-based clustering algorithm to identify possible cluster representatives in different sEMG channels. These cluster representatives are then used as initial points of modified gradient Convolution Kernel Compensation (gCKC) algorithm. Afterwards, we use the Kalman filter to reduce the noise impact and increase convergence rate of MU filter identification by gCKC. Moreover, we designed an adaptive soft-thresholding method to identify MU firing times out of estimated MU spike trains. We tested the proposed algorithm on a set of synthetic sEMG signals with known MU firing patterns. A grid of 9 × 10 monopolar surface electrodes with 5-mm inter-electrode distances in both directions was simulated. Muscle excitation was set to 10, 30, and 50%. Colored Gaussian zero-mean noise with the signal-to-noise ratio (SNR) of 10, 20, and 30 dB, respectively, was added to 16 s long sEMG signals that were sampled at 4,096 Hz. Overall, 45 simulated signals were analyzed. Our decomposition approach was compared with gCKC algorithm. Overall, in our algorithm, the average numbers of identified MUs and Rate-of-Agreement (RoA) were 16.41 ± 4.18 MUs and 84.00 ± 0.06%, respectively, whereas the gCKC identified 12.10 ± 2.32 MUs with the average RoA of 90.78 ± 0.08%. Therefore, the proposed GSS method identified more MUs than the gCKC, with comparable performance. Its performance was dependent on the signal quality but not the signal complexity at different force levels. The proposed algorithm is a promising new offline tool in clinical neurophysiology.
机译:尽管在理解神经代码方面取得了进步,但是皮质-肌肉耦合的研究仍主要依赖于干扰性肌电图(EMG)信号或其纠正来评估运动神经元池行为。这种评估是不平凡的,应谨慎使用。通过分解EMG对神经代码进行直接分析(也称为神经解码)是EMG幅度估计的替代方法。在这项研究中,我们提出了一种完全确定性的混合表面肌电(sEMG)分解方法,该方法结合了基于模板的分解方法和盲源分离(BSS)分解方法(也称为引导源分离(GSS))的优点,以识别电机单元( MU)射击模式。我们使用基于单遍密度的聚类算法来识别不同sEMG通道中的可能聚类代表。然后,将这些聚类代表用作改进的梯度卷积内核补偿(gCKC)算法的起点。之后,我们使用卡尔曼滤波器来减少噪声影响,并提高通过gCKC识别MU滤波器的收敛速度。此外,我们设计了一种自适应软阈值方法,以从估计的MU峰值序列中识别MU触发时间。我们在具有已知MU触发模式的一组合成sEMG信号上测试了该算法。模拟了两个方向上电极间距离为5mm的9×10单极表面电极的网格。肌肉刺激设置为10%,30%和50%。将分别具有10、20和30 dB信噪比(SNR)的彩色高斯零均值噪声添加到以4096 Hz采样的16 s长sEMG信号中。总体上,分析了45个模拟信号。我们的分解方法与gCKC算法进行了比较。总体而言,在我们的算法中,已识别MU的平均数量和协议速率(RoA)分别为16.41±4.18 MU和84.00±0.06%,而gCKC识别出12.10±2.32 MU,平均RoA为90.78±0.08 %。因此,提出的GSS方法比gCKC识别出更多的MU,并且具有可比的性能。其性能取决于信号质量,但不取决于不同作用力水平下的信号复杂性。所提出的算法是临床神经生理学中有希望的新的离线工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号