首页> 外文期刊>Frontiers in Chemistry >A review of solar thermochemical CO2 splitting using ceria-based ceramics with designed morphologies and microstructures
【24h】

A review of solar thermochemical CO2 splitting using ceria-based ceramics with designed morphologies and microstructures

机译:使用具有设计形态和微观结构的二氧化铈基陶瓷对太阳能进行热化学分解的研究进展

获取原文
           

摘要

This review explores the advances in the synthesis of ceria materials with specific morphologies or porous macro- and microstructures for the solar-driven production of carbon monoxide (CO) from carbon dioxide (CO2). As the demand for renewable energy and fuels continues to grow, there is a great deal of interest in solar thermochemical fuel production (STFP), with the use of concentrated solar light to power the splitting of carbon dioxide. This can be achieved in a two-step cycle, involving the reduction of CeO2 at high temperatures, followed by oxidation at lower temperatures with CO2, splitting it to produce CO, powered by concentrated solar power (CSP) to provide the high reaction temperatures of typically up to 1500 oC. Since cerium oxide was first explored as a solar-driven redox catalyst in 2006, and to specifically split CO2 in 2010, there has been an increasing interest in this material. The solar-to-fuel conversion efficiency is influenced by the material composition itself, but also by the material morphology that mostly determines the available surface area for solid/gas reactions (the material oxidation mechanism is mainly governed by surface reaction). The diffusion length and specific surface area affect, respectively, the reduction and oxidation steps. They both depend on the reactive material morphology that also substantially affects the reaction kinetics and heat and mass transport in the material. Accordingly, the main relevant options for materials shaping are summarised. We explore the effects of microstructure and porosity, and the exploitation of designed structures such as fibres, 3-DOM (three-dimensionally ordered macroporous) materials, reticulated and replicated foams, and the new area of biomimetic/biomorphous porous ceria catalysts produced from natural and sustainable templates such as wood or cork, sometimes known as ecoceramics.
机译:这篇综述探索了具有特定形态或多孔宏观和微观结构的二氧化铈材料的合成进展,以用于太阳能驱动由二氧化碳(CO2)生产一氧化碳(CO)。随着对可再生能源和燃料的需求持续增长,人们对太阳能热化学燃料生产(STFP)产生了浓厚的兴趣,其中利用聚光的太阳能来为二氧化碳的分解提供动力。这可以分两个步骤完成,包括在高温下还原CeO2,然后在较低的温度下用CO2氧化,将其分解成CO,再由聚光太阳能(CSP)供电以提供较高的反应温度。通常最高1500 oC。自从2006年氧化铈被首次用作太阳能驱动的氧化还原催化剂以来,到2010年专门用于分解CO2以来,人们对该材料的兴趣日益增加。太阳到燃料的转换效率不仅受材料成分本身的影响,而且受材料形态的影响,材料形态主要决定了固/气反应的可用表面积(材料氧化机理主要由表面反应决定)。扩散长度和比表面积分别影响还原和氧化步骤。它们都取决于反应性材料的形态,该形态也显着影响反应动力学以及材料中的热量和质量传递。因此,总结了材料成形的主要相关选择。我们探讨了微观结构和孔隙率的影响,以及对设计结构的开发,例如纤维,3-DOM(三维有序大孔)材料,网状和复制泡沫,以及由天然产生的仿生/生物形态多孔二氧化铈催化剂的新领域以及可持续发展的模板,例如木材或软木,有时也称为生态陶瓷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号