首页> 美国卫生研究院文献>Frontiers in Chemistry >A Review of Solar Thermochemical CO2 Splitting Using Ceria-Based Ceramics With Designed Morphologies and Microstructures
【2h】

A Review of Solar Thermochemical CO2 Splitting Using Ceria-Based Ceramics With Designed Morphologies and Microstructures

机译:使用具有设计形态和微观结构的二氧化铈基陶瓷对太阳能进行热化学分解的研究进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This review explores the advances in the synthesis of ceria materials with specific morphologies or porous macro- and microstructures for the solar-driven production of carbon monoxide (CO) from carbon dioxide (CO2). As the demand for renewable energy and fuels continues to grow, there is a great deal of interest in solar thermochemical fuel production (STFP), with the use of concentrated solar light to power the splitting of carbon dioxide. This can be achieved in a two-step cycle, involving the reduction of CeO2 at high temperatures, followed by oxidation at lower temperatures with CO2, splitting it to produce CO, driven by concentrated solar radiation obtained with concentrating solar technologies (CST) to provide the high reaction temperatures of typically up to 1,500°C. Since cerium oxide was first explored as a solar-driven redox material in 2006, and to specifically split CO2 in 2010, there has been an increasing interest in this material. The solar-to-fuel conversion efficiency is influenced by the material composition itself, but also by the material morphology that mostly determines the available surface area for solid/gas reactions (the material oxidation mechanism is mainly governed by surface reaction). The diffusion length and specific surface area affect, respectively, the reduction and oxidation steps. They both depend on the reactive material morphology that also substantially affects the reaction kinetics and heat and mass transport in the material. Accordingly, the main relevant options for materials shaping are summarized. We explore the effects of microstructure and porosity, and the exploitation of designed structures such as fibers, 3-DOM (three-dimensionally ordered macroporous) materials, reticulated and replicated foams, and the new area of biomimetic/biomorphous porous ceria redox materials produced from natural and sustainable templates such as wood or cork, also known as ecoceramics.
机译:这篇综述探索了在特定的形态或多孔的宏观和微观结构的氧化铈材料的合成中的进展,这些材料用于以太阳能为动力从二氧化碳(CO2)生产一氧化碳(CO)。随着对可再生能源和燃料需求的持续增长,人们对太阳能热化学燃料生产(STFP)产生了浓厚的兴趣,其中利用聚光的太阳能来为二氧化碳的分解提供动力。这可以分两个步骤完成,包括在高温下还原CeO2,然后在较低温度下用CO2氧化,将其分解成CO,由集中太阳能技术(CST)获得的集中太阳辐射驱动,从而提供通常高达1,500°C的高反应温度。自从2006年氧化铈首次被用作太阳能驱动的氧化还原材料以来,到2010年专门用于分解CO2以来,人们对该材料的兴趣日益浓厚。太阳能转化效率受材料本身的影响,但也受主要决定固/气反应可用表面积的材料形态的影响(材料氧化机理主要由表面反应决定)。扩散长度和比表面积分别影响还原和氧化步骤。它们都取决于反应性材料的形态,该形态也显着影响反应动力学以及材料中的热量和质量传递。因此,总结了材料成形的主要相关选择。我们探讨了微观结构和孔隙率的影响,以及对设计结构的开发,例如纤维,3-DOM(三维有序大孔)材料,网状和复制泡沫以及仿生/生物形多孔二氧化铈氧化还原材料的新领域天然且可持续的模板,例如木材或软木,也称为生态陶瓷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号