...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Editorial: The Role of the Plasminogen Activating System in Neurobiology
【24h】

Editorial: The Role of the Plasminogen Activating System in Neurobiology

机译:社论:纤溶酶原激活系统在神经生物学中的作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The plasminogen activating system has been well-appreciated for its roles in fibrinolysis and metastatic cancer for over 30 years. These observations lead to the clinical development of the key plasminogen activators, namely urokinase (u-PA), and tissue-type plasminogen activator (t-PA) as thrombolytic agents, initially for myocardial infarction in the mid-1980's, and a decade later for use in patients with ischaemic stroke following the approval of tPA (Ninds, 1995 ). Similarly various attempts were made to modulate cell surface plasminogen activation in an effort to reduce metastatic spread with varying success, although various components of this system have become biomarkers for some malignancies (McMahon and Kwaan, 2015 ). While many laboratories continue to work in these classical areas, and with due reason, a growing list of publications dating from the early 1980's revealed that the main components of the plasminogen activating system were expressed in almost all cell types and were regulated by agonists linked to almost all signal transduction pathways identified (Medcalf, 2007 ). While these reports were consistent with a broadening role of the plasminogen activating system in physiology, other findings also from the early 1980's reported strong expression of components of the plasminogen activating system in the central nervous system (Krystosek and Seeds, 1981 ; Soreq and Miskin, 1981 ). While these were largely descriptive studies, and without any clear connection to conventional fibrinolysis or metastatic cancer, speculation arose as to the role of the plasminogen activating system in the CNS (Yepes and Lawrence, 2004 ), particularly given the fact that the normal brain is devoid of fibrin. A decade or so later, CNS focused reports of activity dependent expression of t-PA in the brain added substantial fuel to notion of a critical role for t-PA in normal brain function, with increases in t-PA gene expression in the CNS correlated with long term potentiation (Qian et al., 1993 ; Huang et al., 1996 ); and motor learning (Seeds et al., 1995 ). Soon after, reports using t-PA deficient mice provided evidence for surprising neurotoxic effects of t-PA where t-PA, via plasmin was shown to be necessary to facilitate glutamate-mediated toxicity in vivo (Chen and Strickland, 1997 ). These reports were published at about the same time that t-PA was approved for therapeutic use in patients with ischemic stroke and raised concerns with the clinical use of t-PA given the fact t-PA administration in ischemic stroke was not risk-free. It soon became apparent that t-PA was influencing numerous other aspects of brain function including modulation of memory (Huang et al., 1996 ) and learning (Seeds et al., 2003 ) and the response to drugs of addiction (Pawlak et al., 2005 ; Bahi and Dreyer, 2008 ; Maiya et al., 2009 ). Another landmark discovery made in the early 2000's reported a potent effect of t-PA at promoting BBB disruption in rodent models of cerebral ischemia (Yepes et al., 2003 ), an effect that has since been documented in a subset of human stroke patients who receive thrombolysis (Kidwell et al., 2008 ). This further added to the debate of t-PA as a safe thrombolytic in patients with ischaemic stroke. The enhancing effect of t-PA on BBB permeability not only directed many laboratories to uncover the mechanism behind this (Su et al., 2008 ; Niego et al., 2012 ), but also raised interest in other areas of brain pathology where BBB integrity was compromised, namely in traumatic brain injury (TBI, Mori et al., 2001 ). Initial research into the role of t-PA at influencing outcome following TBI resulted in a number of publications supporting the notion that brain-derived t-PA, as opposed to exogenous t-PA (as in ischemic stroke), was also promoting BBB permeability and subsequent deleterious outcome following TBI (Sashindranath et al., 2012 ; Su et al. ). It soon became apparent that t-PA was indeed a major modulator of BBB permeability (Niego and Medcalf, 2014 ), even under non-ischemic or traumatic conditions (Fredriksson et al., 2016 ). With the realization of these various roles of t-PA in the CNS, questions arose as to how t-PA was implementing these effects and how it was being regulated. t-PA modulating agents i.e., neuroserpin (Lebeurrier et al., 2005 ), critical signaling systems i.e., tyrosine kinase (Su et al., 2008 ), and Rho kinase pathways (Niego et al., 2012 ), and receptors i.e., LRP-1 (Yepes et al., 2003 ; Samson et al., 2008 ), and PDGFRα (Fredriksson et al., 2004 ) in the CNS were later identified by various groups to participate in this new frontier of plasminogen activation biology. Although these findings pushed the field further, controversy also arose. Conflicting reports on how t-PA promoted neurotoxicity (Nicole et al., 2001 ; Matys and Strickland, 2003 ; Samson et al., 2008 ), or its opposite effect (i.e., neuroprotection) via non-proteolytic means (Kim et al., 1999 ), or proteoly
机译:纤溶酶原激活系统因其在纤维蛋白溶解和转移性癌症中的作用而享誉​​30多年。这些发现导致了关键的纤溶酶原激活物,即尿激酶(u-PA)和组织型纤溶酶原激活物(t-PA)作为溶栓剂的临床开发,最初在1980年代中期用于心肌梗死,十年后经tPA批准,可用于缺血性中风患者(Ninds,1995年)。类似地,尽管该系统的各个组成部分已成为某些恶性肿瘤的生物标志物,但为减少转移性扩散进行了各种尝试来调节细胞表面纤溶酶原的激活(McMahon和Kwaan,2015年)。尽管许多实验室继续在这些经典领域中工作,并且有适当的理由,但是可以追溯到1980年代初的出版物不断增加,发现纤溶酶原激活系统的主要成分几乎在所有细胞类型中都表达,并受到与几乎所有信号转导途径都已确定(Medcalf,2007年)。尽管这些报道与纤溶酶原激活系统在生理学中的广泛作用相一致,但1980年代初期的其他发现也报道了纤溶酶原激活系统的成分在中枢神经系统中的强表达(Krystosek和Seeds,1981; Soreq和Miskin, 1981)。虽然这些研究主要是描述性的研究,与常规的纤维蛋白溶解或转移性癌症没有任何明确的联系,但人们猜测纤溶酶原激活系统在中枢神经系统中的作用(Yepes和Lawrence,2004年),尤其是考虑到正常大脑处于不含纤维蛋白。大约十年后,CNS集中报道了脑中t-PA的活性依赖表达,这为t-PA在正常脑功能中的关键作用提供了重要依据,而CNS中t-PA基因的表达也与之相关具有长时程增强作用(Qian等,1993; Huang等,1996);和运动学习(Seeds等,1995)。不久之后,使用t-PA缺陷小鼠的报道提供了t-PA令人惊讶的神经毒性作用的证据,其中显示通过纤溶酶的t-PA在体内促进谷氨酸介导的毒性是必需的(Chen和Strickland,1997)。这些报告大约在t-PA被批准用于缺血性卒中患者治疗的同时发表,并且由于t-PA在缺血性卒中中的使用并非无风险,因此引起了对t-PA临床应用的关注。很快变得明显的是,t-PA正在影响大脑功能的许多其他方面,包括记忆的调节(Huang等,1996)和学习(Seeds等,2003)以及对成瘾药物的反应(Pawlak等,2003)。 ,2005; Bahi和Dreyer,2008; Maiya等,2009)。 2000年代初的另一个重大发现报道了t-PA在促进脑缺血的啮齿动物模型中促进BBB破坏的有效作用(Yepes等人,2003年),此作用已在部分人类中风患者中得到了证实,接受溶栓治疗(Kidwell等,2008)。这进一步增加了t-PA作为缺血性卒中患者安全溶栓的争论。 t-PA对BBB通透性的增强作用不仅使许多实验室揭示了其背后的机制(Su等,2008; Niego等,2012),而且引起了其他脑病理学领域对BBB完整性的关注受损,即在外伤性脑损伤中受损(TBI,Mori等,2001)。关于t-PA在TBI后影响预后的作用的初步研究导致许多出版物支持以下观点:脑源性t-PA不同于外源性t-PA(如在缺血性中风中)也促进了BBB的通透性以及TBI之后的有害后果(Sashindranath等,2012; Su等)。很快变得明显的是,即使在非缺血性或创伤性条件下,t-PA的确是BBB通透性的主要调节剂(Niego和Medcalf,2014)(Fredriksson等,2016)。随着t-PA在中枢神经系统中的各种作用的实现,人们开始质疑t-PA如何实现这些作用以及如何对其进行调节。 t-PA调节剂,即Neuroserpin(Lebeurrier等,2005),关键信号系统,即酪氨酸激酶(Su等,2008)和Rho激酶途径(Niego等,2012),以及受体,即随后,各个小组确定了CNS中的LRP-1(Yepes等,2003; Samson等,2008)和PDGFRα(Fredriksson等,2004),以参与纤溶酶原激活生物学的这一新领域。尽管这些发现进一步推动了该领域,但也引起了争议。关于t-PA如何促进神经毒性的报道相互矛盾(Nicole等,2001; Matys和Strickland,2003; Samson等,2008),或通过非蛋白水解手段的相反作用(即神经保护作用)(Kim等。 (1999年),或

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号