...
首页> 外文期刊>Frontiers in Cellular Neuroscience >Commentary: Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition
【24h】

Commentary: Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition

机译:评论:氯化物调节:突触抑制的动态平衡至关重要。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The recent review by Doyon et al. ( 2016 ) is for the main part an excellent description of many important aspects of neuronal chloride regulation and will be of good use to many scientists interested in synaptic function. Nevertheless, some information given on the role of the K~(+)Cl~(?)cotransporter 2 (KCC2) is likely to be misleading. While proposing an explanation for the controversial findings by Glykys et al. ( 2014 ) that blockers of cation-chloride cotransporters did not affect the basal intracellular Cl~(?)concentration ([Cl~(?)]_(i)), contrary to expectations from previous transporter manipulations (see e.g., references in Ben-Ari, 2014 ; Kaila et al., 2014 ), Doyon et al. ( 2016 ) suggest that this may be due to the small degree of inhibitory synaptic activity in the preparation used, with extremely low Cl~(?)load. In their explanation, they give an equation for the equilibrium relation between Cl~(?)flux through an inhibitory (Cl~(?)) conductance (g_(inh)) and the Cl~(?)transported by KCC2. On basis of this equation, the conclusion is that the Cl~(?)equilibrium potential “E_(Cl)is sensitive to changes in KCC2 activity (g_(KCC2)) only when Cl~(?)load (g_(inh)) is large.” This conclusion, however, cannot be justified on basis of the relation between Cl~(?)flux through channels and Cl~(?)transported by KCC2. (The equation given by Doyon et al. is not correctly formulated, although the reason for their claim may not depend on this mistake). For an explanation of our point of view, consider a hypothetical cell with Cl~(?)transport across the outer membrane only via Cl~(?)selective channels and KCC2. At equilibrium, the amount (mol/s) of Cl~(?)transported by the channels must be equal, but opposite, to that transported by KCC2. We thus formulate the relation: (1) I Cl / F? = ?g KCC 2 U KCC 2 where I_(Cl)is Cl~(?)current, F is the Faraday constant and U_(KCC2)is the driving force for transport by KCC2. g_(KCC2)is a proportionality factor that may be thought of as an “apparent conductance,” and should reflect the number of transporters in the membrane as well as the transport rate of the individual transporter molecules at fixed K~(+)and Cl~(?)concentrations, similarly as I_(Cl)depends on the Cl~(?)conductance (g_(Cl)) which reflects the number of Cl~(?)channels as well as the conductance of individual channels. (g_(KCC2)is, however, not a conductance in the usual electrical sense). Equation (1) may be reformulated, in several steps, for clarity: (2) g Cl ? ( V m ? E Cl ) / F = g KCC 2 ? ( RT?ln? ( [ Cl ? ] i / [ Cl ? ] o ) + RT?ln? ( [ K + ] i / [ K + ] o ) ) (3) g Cl ? ( V m ? E Cl ) / F?=?g KCC 2 ?F? ( E Cl ? E K ) (4) E Cl = ( g KCC 2 ? F 2 ? E K + g Cl V m ) / ???????? ( g KCC 2 ? F 2 + g Cl ) where V_(m)is membrane potential, R the gas constant, T temperature (in K), E_(K)the K~(+)equilibrium potential and Cl~(?)and K~(+)concentrations are given within brackets with subscripts i and o for inside and outside, respectively. We may use Equation (4) to illustrate the relation between E_(Cl)and g_(KCC2)at various levels of g_(Cl). (Assume that K~(+)concentrations and membrane potential are fixed, as controlled by other factors, such as the cellular Na~(+)-K~(+)-ATPase, not discussed here). As can be seen in Figure 1A , contrary to the claim by Doyon et al. ( 2016 ), E_(Cl)is only weakly dependent on KCC2 transport capacity at high Cl~(?)conductance, while it depends strongly on KCC2 when Cl~(?)conductance is low. At the extremes, when g_(KCC2)= 0, then E_(Cl)= V_(m)and when g_(Cl)= 0, then E_(Cl)= E_(K). Figure 1 Cl~(?)equilibrium potential — dependence on KCC2 transporter capacity at various Cl~(?)conductance and various membrane potentials. (A) E_(Cl)vs. g_(KCC2)with E_(K)fixed at ?100 mV and V_(m)at ?60 mV. g_(Cl)as indicated. Note that E_(Cl)dependence on g_(KCC2)is reduced with increased g_(Cl). (B) E_(Cl)vs. g_(KCC2)with E_(K)fixed at ?100 mV and g_(Cl)at 1 nS. V_(m)as indicated. Note that E_(Cl)dependence on g_(KCC2)increases when V_(m)changes in positive direction. Note the x-axis break between 0.5 and 1.9 10~(?18)mol~(2)/(V C s), to clearer illustrate the steeply decaying region of the curves. Justification of illustrated parameter ranges: The g_(Cl)range (in A ) was chosen to include cells with a low g_(Cl)as evident from the high membrane resistance (Johansson et al., 1995 ) as well as cells with a high g_(Cl)(very low input resistance dominated by inhibitory conductances; Destexhe et al., 2003 ). The g_(KCC2)range (in A,B ) shown likely covers the capacity for most central neurons: When g_(KCC2)= 1 10~(?18)mol~(2)/(V C s), KCC2-mediated transport modeled as described by Karlsson et al. ( 2011 ) may reduce [Cl~(?)]_(i)from 20 mM to ~5 mM with approximated time constants of 0.85, 6.8, and 55 s for spherical cells of radius 5, 10, and 20 μm, respectively, assuming 50% cytosolic volume and no other Cl~(?)transport/leak. Experimentally observed [Cl~(?)]_(i)recovery is slower or comparable (Ber
机译:Doyon等人最近的评论。 (2016年)主要部分是对神经元氯化物调节的许多重要方面的出色描述,并将对许多对突触功能感兴趣的科学家很好地使用。但是,有关K〜(+)Cl〜(?)共转运蛋白2(KCC2)作用的某些信息可能会产生误导。在提出有争议的发现的解释时,Glykys等人。 (2014)阳离子-氯化物共转运蛋白的阻滞剂没有影响基础细胞内Cl〜(?)的浓度([Cl〜(?)] _(i)),这与先前转运蛋白操作的预期相反(参见Ben中的参考文献) -Ari,2014; Kaila等人,2014),Doyon等人。 (2016年)表明,这可能是由于所用制剂的抑制性突触活性程度小,Cl〜(β)负荷极低。在他们的解释中,他们给出了通过抑制性(Cl_(?))电导(g_(inh))和KCC2传输的Cl〜(?)之间的Cl〜(?)磁通之间的平衡关系方程。根据该方程,得出的结论是,仅当Cl〜(?)负载(g_(inh))时,Cl〜(?)平衡电位“ E_(Cl)才对KCC2活性(g_(KCC2))的变化敏感。很大。”然而,基于通过通道的Cl〜(?)通量和由KCC2传输的Cl〜(?)之间的关系,不能得出结论。 (Doyon等人给出的方程式公式不正确,尽管提出索赔的理由可能不取决于该错误)。为了解释我们的观点,请考虑一个仅通过Cl〜(?)选择性通道和KCC2通过Cl〜(?)转运穿过外膜的假想细胞。在平衡时,通过通道传输的Cl〜(α)的量(摩尔/秒)必须等于但与KCC2传输的量相反。因此,我们得出以下关系式:(1)I Cl / F? =ΔgKCC 2 U KCC 2其中I_(Cl)为Cl〜(ω)电流,F为法拉第常数,U_(KCC2)为通过KCC2传输的驱动力。 g_(KCC2)是一个比例因子,可以认为是“表观电导”,它应反映膜中转运蛋白的数目以及固定K〜(+)和Cl下各个转运蛋白分子的转运速率〜(?)浓度与I_(Cl)类似,取决于Cl_(?)电导(g_(Cl)),其反映Cl〜(?)通道的数量以及各个通道的电导。 (但是,g_(KCC2)不是通常的电学意义上的电导)。为了清楚起见,可以分几步重新公式化公式(1):(2) (V·m·E·Cl)/ F = g·KCC 2··· (RT?ln?([Cl?] i / [Cl?] o)+ RT?ln?([K +] i / [K +] o))(3)g Cl? (V m = E Cl)/ F 2 = g g KCC 2F。 (E Cl≤EK)(4)E Cl =(g KCC 2≤F2≤EK + g Cl V m)/ ??????????? (g KCC 2?F 2 + g Cl)其中V_(m)为膜电位,R为气体常数,T温度(单位为K),E_(K)为K〜(+)平衡电位和Cl〜(?)和K〜(+)浓度分别在括号内给出,括号内和下标分别为i和o。我们可以使用等式(4)来说明在各种g_(Cl)水平下E_(Cl)和g_(KCC2)之间的关系。 (假设在其他因素(例如细胞Na〜(+)-K〜(+)-ATPase)的控制下,K〜(+)的浓度和膜电位是固定的,此处不做讨论。从图1A中可以看出,与Doyon等人的主张相反。 (2016),在高Cl〜(?)电导率下,E_(Cl)仅微弱地依赖于KCC2的传输能力,而当Cl〜(?)电导率低时,E_(Cl)仅强烈地依赖于KCC2。在极端情况下,当g_(KCC2)= 0时,则E_(Cl)= V_(m);当g_(Cl)= 0时,则E_(Cl)= E_(K)。图1 Cl〜(?)平衡电位-在各种Cl〜(?)电导和各种膜电位下对KCC2转运蛋白容量的依赖性。 (A)E_(Cl)vs。 g_(KCC2)的E_(K)固定为100 mV,V_(m)固定为60 mV。如所示,g_(Cl)。注意,随着g_(Cl)的增加,E_(Cl)对g_(KCC2)的依赖性降低。 (B)E_(Cl)vs。 g_(KCC2)的E_(K)固定为100 mV,g_(Cl)的固定为1 nS。如所示的V_(m)。注意,当V_(m)向正方向变化时,E_(Cl)对g_(KCC2)的依赖性增加。请注意,x轴在0.5和1.9 10〜(?18)mol〜(2)/(V C s)之间断裂,以更清楚地说明曲线的陡峭衰减区域。图示参数范围的合理性:选择g_(Cl)范围(在A中)以包括具有低g_(Cl)的细胞(从高膜电阻(Johansson等,1995)中可以看出)以及具有高g_(Cl)的细胞。 g_(Cl)(极低的输入电阻受抑制电导控制; Destexhe等,2003)。显示的g_(KCC2)范围(在A,B中)可能涵盖了大多数中枢神经元的容量:当g_(KCC2)= 1 10〜(?18)mol〜(2)/(VC s)时,KCC2介导的转运如Karlsson等人所述建模。 (2011)可能将[Cl〜(?)] _(i)从20 mM降低到〜5 mM,对于半径分别为5、10和20μm的球形单元,时间常数分别为0.85、6.8和55 s,假设胞质体积为50%,没有其他Cl〜(?)转运/泄漏。实验观察到[Cl〜(?)] _(i)的恢复较慢或相当(Ber

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号