...
首页> 外文期刊>Fluids >Turbulence Enhancement by Fractal Square Grids: Effects of Multiple Fractal Scales
【24h】

Turbulence Enhancement by Fractal Square Grids: Effects of Multiple Fractal Scales

机译:分形方格增强湍流:多分形尺度的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Multi-scale fractal grids can be considered to mimic the fractal characteristic of objects of complex appearance in nature, such as branching pulmonary network and corals in biology, river network, trees, and cumulus clouds in geophysics, and the large-scale structure of the universe in astronomy. Understanding the role that multiple length scales have in momentum and energy transport is essential for effective utilization of fractal grids in a wide variety of engineering applications. Fractal square grids, consisted of the basic square pattern, have been used for enhancing fluid mixing as a passive flow control strategy. While previous studies have solidified the dominant effect of the largest scale, effects of the smaller scales and the interaction of the range of scales on the generated turbulent flow remain unclear. This research is to determine the relationship between the fractal scales (varying with the fractal iteration N), the turbulence statistics of the flow and the pressure drop across the fractal square grids using well-controlled water-tunnel experiments. Instantaneous and ensemble-averaged velocity fields are obtained by a planar Particle Image Velocimetry (PIV) method for a set of fractal square grids (N = 1, 2 and 4) at Reynolds number of 3400. The static pressure drop across the fractal square grid is measured by a differential pressure transducer. Flow fields indicate that the multiple jets, wakes and the shear layers produced by the multiple scales of bars are the fundamental flow physics that promote momentum transport in the fractal grid generated turbulence. The wake interaction length scale model is modified to incorporate the effects of smaller scales and thereof interaction, by the effective mesh size M e f f and an empirical coefficient β . Effectiveness of a fractal square grid is assessed using the gained turbulence intensity and Reynolds shear stress level at the cost of pressure loss, which varies with the distance downstream. In light of the promising capability of the fractal grids to enhance momentum and energy transport, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.
机译:可以考虑使用多尺度分形网格来模仿自然界中外观复杂的物体的分形特征,例如生物学中的分支肺网络和珊瑚,地球物理中的河网,树木和积云,以及大尺度的分形网格。天文学中的宇宙。理解多种长度尺度在动量和能量传输中的作用对于在各种工程应用中有效利用分形网格至关重要。分形方格由基本方格组成,已被用作增强流体混合的被动流量控制策略。虽然先前的研究已经巩固了最大尺度的主导作用,但较小尺度的作用以及尺度范围对产生的湍流的相互作用仍然不清楚。本研究旨在通过控制良好的水隧道实验确定分形尺度(随分形迭代N的变化),流的湍流统计和分形方格上的压降之间的关系。通过平面粒子图像测速(PIV)方法获得了一组雷诺数为3400的分形方格(N = 1、2和4)的瞬时平均速度和整体平均速度场。整个分形方格的静压降由差压传感器测量。流场表明,由多个尺度的条产生的多个射流,尾流和剪切层是促进分形网格产生的湍流中动量传输的基本流动物理学。通过有效网格尺寸M e f f和经验系数β,对尾流相互作用长度尺度模型进行了修改,以合并较小尺度及其相互作用的影响。使用获得的湍流强度和雷诺剪切应力水平以压力损失为代价来评估分形方格网的有效性,该损失随下游距离而变化。鉴于分形网格增强动量和能量传输的潜力,这项工作可能会有益于将节能混合或对流传热作为关键过程的各种应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号