首页> 外文期刊>Geoscientific Model Development >Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum
【24h】

Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum

机译:模拟地球系统中的气孔电导:将叶片水分利用效率与水沿着土壤-植物-大气连续体的运输联系起来

获取原文
获取外文期刊封面目录资料

摘要

The Ball–Berry stomatal conductance model is commonlyused in earth system models to simulate biotic regulation ofevapotranspiration. However, the dependence of stomatal conductance(gs) on vapor pressure deficit (Ds) and soil moisture must beempirically parameterized. We evaluated the Ball–Berry model used in theCommunity Land Model version 4.5 (CLM4.5) and an alternative stomatalconductance model that links leaf gas exchange, plant hydraulic constraints,and the soil–plant–atmosphere continuum (SPA). The SPA model simulatesstomatal conductance numerically by (1) optimizing photosynthetic carbon gainper unit water loss while (2) constraining stomatal opening to prevent leafwater potential from dropping below a critical minimum. We evaluated twooptimization algorithms: intrinsic water-use efficiency (ΔAn/Δgs, the marginal carbon gain of stomatal opening) andwater-use efficiency (ΔAn /ΔEl, themarginal carbon gain of transpiration water loss). We implemented thestomatal models in a multi-layer plant canopy model to resolve profiles ofgas exchange, leaf water potential, and plant hydraulics within the canopy,and evaluated the simulations using leaf analyses, eddy covariance fluxes atsix forest sites, and parameter sensitivity analyses. The primary differencesamong stomatal models relate to soil moisture stress and vapor pressuredeficit responses. Without soil moisture stress, the performance of the SPAstomatal model was comparable to or slightly better than the CLM Ball–Berrymodel in flux tower simulations, but was significantly better than the CLMBall–Berry model when there was soil moisture stress. Functional dependenceof gs on soil moisture emerged from water flow along thesoil-to-leaf pathway rather than being imposed a priori, as in the CLMBall–Berry model. Similar functional dependence of gs onDs emerged from the ΔAn/ΔEloptimization, but not the ΔAn /gsoptimization. Two parameters (stomatal efficiency and root hydraulicconductivity) minimized errors with the SPA stomatal model. The criticalstomatal efficiency for optimization (ι) gave results consistent withrelationships between maximum An and gs seen in leaftrait data sets and is related to the slope (g1) of the Ball–Berrymodel. Root hydraulic conductivity (Rr*) was consistentwith estimates from literature surveys. The two central concepts embodied inthe SPA stomatal model, that plants account for both water-use efficiency andfor hydraulic safety in regulating stomatal conductance, imply a notion ofoptimal plant strategies and provide testable model hypotheses, rather thanempirical descriptions of plant behavior.
机译:Ball-Berry气孔电导模型通常用于地球系统模型中,以模拟蒸散的生物调节。然而,气孔导度( g s )对蒸气压亏缺( D s )和土壤水分的依赖性必须凭经验参数化。我们评估了社区土地模型4.5(CLM4.5)中使用的Ball-Berry模型以及将叶片气体交换,植物水力约束以及土壤-植物-大气连续体(SPA)联系起来的替代气孔导度模型。 SPA模型通过(1)优化每单位失水量的光合碳吸收率,同时(2)限制气孔开口以防止叶片水势降至临界最小值以下,来数值模拟气孔电导率。我们评估了两种优化算法:内在用水效率(Δ A n /Δ g s ,边际碳气孔开度的获得)和水分利用效率(Δ A n /Δ E l 蒸腾失水)。我们在多层植物冠层模型中实现了气孔模型,以解决冠层内部的气体交换,叶水势和植物水力状况,并使用叶片分析,六个森林站点的涡度协方差通量和参数敏感性分析对模拟进行了评估。气孔模型之间的主要差异涉及土壤水分胁迫和蒸汽压亏缺响应。在没有土壤水分胁迫的情况下,在通量塔模拟中,SPAstomatal模型的性能与CLM Ball–Berry模型相当或稍好,但在存在土壤水分应力的情况下,其性能明显优于CLMBall–Berry模型。 g s 对土壤水分的功能依赖性来自土壤到叶的水流,而不是像CLMBall-Berry模型那样被先验地施加。 g s 对 D s 的类似功能依赖性从Δ A < sub> n /Δ E l 优化,而不是Δ A n / g s 优化。 SPA气孔模型的两个参数(气孔效率和根部水力传导率)使误差最小化。优化的临界气孔效率(ι)给出的结果与在叶子特征中看到的最大 A n 和 g s 之间的关系一致数据集,并且与Ball–Berry模型的斜率( g 1 )有关。根部水力传导率( R r * )与文献调查的估计值一致。 SPA气孔模型体现了两个中心概念,即植物在调节气孔导度时既要考虑用水效率,又要考虑水力安全,这暗示了最佳植物策略的概念并提供了可检验的模型假设,而不是对植物行为的经验描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号