首页> 外文期刊>Geosciences >Mechanistic Morphogenesis of Organo-Sedimentary Structures Growing Under Geochemically Stressed Conditions: Keystone to Proving the Biogenicity of Some Archaean Stromatolites?
【24h】

Mechanistic Morphogenesis of Organo-Sedimentary Structures Growing Under Geochemically Stressed Conditions: Keystone to Proving the Biogenicity of Some Archaean Stromatolites?

机译:在地球化学应力条件下生长的有机-沉积结构的力学形态发生:证明某些古生的Stromatolites生物成因的基石?

获取原文
获取外文期刊封面目录资料

摘要

Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus ) and green anoxygenic phototrophic Chloroflexus spp. (i.e., Coleofasciculus – Chloroflexus mats), and Precambrian organo-sedimentary structures, demonstrating parallels between them. In elevated ambient concentrations of Cu (toxic to Coleofasciculus ), Coleofasciculus – Chloroflexus mats respond by forming centimetre-scale pinnacle-like structures (supra-lamina complexities) associated with large quantities of EPS at their surfaces. μPIXE mapping shows that Cu and other metals become concentrated within surficial sheath-EPS- Chloroflexus -rich layers, producing density-differential micromorphologies with distinct fabric orientations that are detectable using X-ray computed micro-tomography (X-ray μCT). Similar micromorphologies are also detectable in stromatolites from the 3.481 Ga Dresser Formation (Pilbara, Western Australia). The cause and response link between the presence of toxic elements (geochemical stress) and the development of multi-layered topographical complexities in organo-sedimentary structures may thus be considered an indicator of biogenicity, being an indisputably biological and predictable morphogenetic response reflecting, in this case, the differential responses of Coleofasciculus and Chloroflexus to Cu. Growth models for microbialite morphogenesis rely upon linking morphology to intrinsic (biological) and extrinsic (environmental) influences. Since the pinnacles of Coleofasciculus – Chloroflexus mats have an unambiguously biological origin linked to extrinsic geochemistry, we suggest that similar micromorphologies observed in ancient organo-sedimentary structures are indicative of biogenesis. An identical Coleofasciculus – Chloroflexus community subjected to salinity stress also produced supra-lamina complexities (tufts) but did not produce identifiable micromorphologies in three dimensions since salinity seems not to negatively impact either organism, and therefore cannot be used as a morphogenetic tool for the interpretation of density-homogeneous micro-tufted mats—for example, those of the 3.472 Ga Middle Marker horizon. Thus, although correlative microscopy is the keystone to confirming the biogenicity of certain Precambrian stromatolites, it remains crucial to separately interrogate each putative trace of ancient life, ideally using three-dimensional analyses, to determine, where possible, palaeoenvironmental influences on morphologies. Widespread volcanism and hydrothermal effusion into the early oceans likely concentrated toxic elements in early biomes. Morphological diversity in fossil microbialites could, therefore, reflect either (or both of) differential exposure to ambient fluids enriched in toxic elements and/or changing ecosystem structure and tolerance to elements through evolutionary time—for example, after incorporation into enzymes. Proof of biogenicity by deducing morphogenesis (i.e., a process preserved in the fossil record) overcomes many of the shortcomings inherent to the proof of biogenicity by descriptions of morphology alone.
机译:形态多样的有机沉积结构(包括微生物垫和叠层石)在超过30亿年的地球历史中提供了古生物学记录。由于对古生化石记录的大部分了解取决于证明此类结构的生物成因,因此对保存完好的化石微生物学的机理解释可以加强我们对其生物地球化学的理解,并区分这些结构中明确的生物学特征,这代表了最早的一些记录。生活。机械形态发生理解依赖于对地球微生物实验的分析。在这里,我们报告形态学生物地球化学比较之间的增长实验中观察到的使用由蓝藻嗜藻塑料(以前称为Microcoleus)和绿色产氧光养性Chloroflexus spp建立的光合垫的光合垫。 (即,结肠骨膜–弯弯曲曲垫)和前寒武纪的有机沉积结构,证明了它们之间的相似性。在高浓度的Cu(对草fa科有毒)的环境中,草fa-绿叶菌席子通过在其表面形成与大量EPS相关的厘米级峰状结构(上层复合物)来响应。 μPIXE映射显示,Cu和其他金属变得集中在表皮-EPS-Chloroflexus丰富的表层中,产生了具有不同织物取向的密度差微形态,可以使用X射线计算机显微断层扫描(X射线μCT)检测到。在3.481 Ga Dresser组(西澳大利亚皮尔巴拉)的叠层岩中也可以检测到类似的微观形态。因此,有毒元素(地球化学应力)的存在与有机沉积结构中多层地形复杂性的发展之间的因果关系可以被认为是生物成因的指标,是无可争辩的生物学和可预测的形态发生反应,反映了这一点。在这种情况下,谷草和绿弯曲菌对铜的不同反应。微菱沸石形态发生的生长模型依赖于将形态与内在(生物学)和外在(环境)影响联系起来。由于古生境–弯叶毡垫的顶峰具有明确的生物学起源,与外部地球化学有关,因此我们认为,在古代有机沉积结构中观察到的相似微观形态可以指示生物发生。遭受盐度胁迫的相同的丘陵-叶绿藻群落也产生了超薄层复杂性(簇),但没有在三个维度上产生可识别的微观形态,因为盐度似乎不会对任何一种生物产生负面影响,因此不能用作解释的形态发生工具密度均匀的微簇绒垫子,例如3.472 Ga中间标记水平的垫子。因此,尽管相关显微镜是确认某些前寒武纪叠层石生物成因的基石,但仍然至关重要的是,分别询问古代生命的每条假定痕迹,最好使用三维分析来确定在可能的情况下古环境对形态的影响。到早期海洋的广泛的火山活动和热液喷发可能会将有毒元素集中在早期生物群落中。因此,化石微生物的形态学多样性可以反映(或同时)差异暴露于富含有毒元素的环境流体和/或在进化过程中(例如掺入酶后)改变生态系统结构和对元素的耐受性。通过推导形态发生(即化石记录中保存的过程)来证明生物成因,克服了仅通过形态描述来证明生物成因所固有的许多缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号