首页> 外文期刊>Geosphere >Alpine-scale 3D geospatial modeling: Applying new techniques to old problems
【24h】

Alpine-scale 3D geospatial modeling: Applying new techniques to old problems

机译:高山3D地理空间建​​模:将新技术应用于旧问题

获取原文
           

摘要

The investigation of geologically complex settings in Alpine or mountainous terrains is still dominated by traditional data collection and analytical techniques. The application of computer-aided geometric design and three-dimensional (3D) visualization and interpretation is rarely applied to such settings, despite its significant benefits. This contribution uses the Gosau Muttekopf Basin (Eastern Alps, Austria) to demonstrate that the application of 3D geospatial models can both provide new insights into our understanding of such settings and result in a more robust and reproducible synthesis of a complex region.The objective of studying the Muttekopf Basin is to investigate the 3D structural control on the deposition of the deepwater sedimentary basin fill. Data for the investigation only consist of that which would be collected in a traditional field study (e.g., structural mapping, stratigraphic logging, and data localities derived from hand-held GPS [global positioning system]). The 3D basin configuration is initially derived using traditional analysis techniques (e.g., cross-section construction, photo-panel mapping, block diagrams, etc.). Using these analysis techniques, significant thickness variations are observed the basin fill and are related to temporal and spatial variations in displacement of the controlling structure on the southern basin margin. However, there are significant limitations to this approach. In particular, because of the uncertainty in projection and spatial positioning, these techniques can only be used in an illustrative or qualitative fashion. To overcome these limitations, a 3D geospatial model is constructed from the same input data and illustrates that 3D geospatial modeling is a powerful technique for understanding complex geological settings. Integration of map data, stratigraphic section data, photographic images, structural data, and rock property data (gamma ray) into a single geospatial model maximizes the constraints of the limited data set. It also facilitates a deeper data analysis by significantly decreasing the time involved in generating multiple surfaces required for isopach generation.The use of the isopach maps in the Muttekopf Basin provides significant insights into the basin's evolution. In the Schlenkerkar section, the isopach maps reveal: (1) there was very little sediment thickness variation across the basin during the early basin fill; (2) the intermediate episode was characterized by a very thick accumulation in the basin's axis with significant thinning onto the southern uplifted margin; and (3) a northward migration of accumulation occurred during the late stage of the basin fill. Overall, the isopach maps suggest that the structure on the southern margin was the primary control on accommodation space creation and that it was most active during the intermediate basin-fill episode. Using similar observations from isopach maps for the entire basin reveals that the change in structural style of the southern margin from a fold- to a fault-dominated system plays a significant role both on internal deformation of the basin as well as the sedimentology of the syngrowth basin fill.Geospatial models, therefore, provide a more robust technique for analyzing and interpreting data within a 3D environment. In addition, they enable analysis that would be impossible with traditional techniques, such as probabilistic geocellular model construction and input models for 3D structural restorations.
机译:传统的数据收集和分析技术仍然主导着对高山或山区地形复杂地质情况的调查。尽管具有显着优势,但很少将计算机辅助几何设计和三维(3D)可视化和解释应用到此类设置中。此贡献使用Gosau Muttekopf盆地(奥地利东阿尔卑斯山)来证明3D地理空间模型的应用不仅可以为我们对这种环境的理解提供新的见解,而且可以使复杂区域的合成更加可靠和可重现。研究Muttekopf盆地是为了研究深水沉积盆地填充物沉积的3D结构控制。用于调查的数据仅包括在传统的现场研究中收集的数据(例如,结构图,地层测井以及从手持GPS [全球定位系统]导出的数据局部性)。 3D盆地配置最初是使用传统的分析技术得出的(例如,横截面构造,光板映射,框图等)。使用这些分析技术,可以观察到盆地填充物明显的厚度变化,并且与南部盆地边缘控制结构位移的时空变化有关。但是,这种方法有很大的局限性。特别地,由于投影和空间定位的不确定性,这些技术只能以说明性或定性的方式使用。为了克服这些限制,从相同的输入数据构建了3D地理空间模型,并说明了3D地理空间建​​模是了解复杂地质设置的强大技术。将地图数据,地层断面数据,摄影图像,结构数据和岩石属性数据(伽马射线)集成到单个地理空间模型中,可以最大程度地限制有限数据集的约束。通过显着减少生成等值线所需的多个表面所需的时间,它还有助于进行更深入的数据分析。Muttekopf盆地中等值线图的使用为该盆地的演化提供了重要的见识。在Schlenkerkar剖面上,等渗线图显示:(1)在早期盆地填充期间,整个盆地的沉积物厚度变化很小; (2)中期事件的特征是盆地轴线上的堆积非常厚,南隆起边缘明显变薄。 (3)盆地后期充填向北迁移。总的来说,等渗线图表明,南部边缘的结构是住房空间创造的主要控制因素,并且在盆地中期充填期最为活跃。从整个盆地的等渗线图上得出的类似观察结果表明,南缘的构造样式从褶皱到断层为主的系统变化对盆地的内部变形以及共生的沉积学都起着重要作用。因此,地理空间模型为3D环境中的数据分析和解释提供了更强大的技术。此外,它们还可以进行传统技术无法进行的分析,例如概率性地细胞模型构建和3D结构恢复的输入模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号