首页> 外文期刊>Geoscientific Model Development Discussions >Plant functional type mapping for earth system models
【24h】

Plant functional type mapping for earth system models

机译:地球系统模型的工厂功能类型映射

获取原文
       

摘要

The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent K?ppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent with current satellite products and adapted for earth system models is an important component for reducing the uncertainty of terrestrial biogeochemistry to climate variability.
机译:全球碳和水循环对气候变化的敏感性直接与土地覆盖和植被分布有关。为了研究生物地球化学与气候之间的相互作用,地球系统模型需要对植被分布进行表示,该分布既可以从遥感数据中指定,也可以通过生物地理模型进行模拟。然而,模型中地球系统状态变量的抽象意味着来自遥感的数据产物需要进行后处理以进行模型数据同化。动态全球植被模型(DGVM)依靠植物功能类型(PFT)的概念将成千上万种植物的共有性状分为几类。观测到的PFT分布的可用数据库必须与现有的卫星传感器及其派生产品以及当今管理土地的分布有关。在这里,我们基于三个卫星传感器(EOS-MODIS 1 km和0.5 km,SPOT4-VEGETATION 1 km和ENVISAT-MERIS 0.3 km空间分辨率)的土地覆盖信息开发了四个PFT数据集,这些数据与空间一致的K合并?ppen-Geiger气候带。使用β(β)多样性度量来评估重新分类的相似性,我们发现PFT分类中最大的不确定性最常发生在农田和草地类别之间,而在灌木,草地和森林类别之间的旱地系统中,这是因为所需的最小阈值不同森林覆盖。将生物地理学-生物地球化学DGVM LPJmL用于诊断模式,并规定了四个PFT数据集,以量化土地覆盖不确定性对总初级生产力(GPP)和蒸腾通量的气候敏感性的影响。我们的结果表明,土地覆盖的不确定性在干旱地区具有很大的影响,在GPP(蒸腾)对降水的敏感性中贡献了多达30%(20%)的不确定性。与目前的卫星产品一致并适用于地球系统模型的植物功能类型数据集的可用性,是减少陆地生物地球化学对气候变化的不确定性的重要组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号