首页> 外文期刊>Geoscientific Instrumentation, Methods and Data Systems Discussions >Designing optimal greenhouse gas monitoring networks??for??Australia
【24h】

Designing optimal greenhouse gas monitoring networks??for??Australia

机译:设计用于澳大利亚的最佳温室气体监测网络

获取原文
           

摘要

Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (COsub2/sub) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CHsub4/sub) and nitrous oxide (Nsub2/subO), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for COsub2/sub, CHsub4/sub and Nsub2/subO and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.
机译:大气运移反演通常用于根据浓度测量值推算温室气体(GHG)通量估算值。可以通过网络设计确定提供这些测量值的地面观测站的最佳位置。在这里,我们使用反向模式的拉格朗日粒子弥散模型(LPDM)以及贝叶斯逆建模框架来导出澳大利亚的最佳温室气体观测网络。这扩展了由Ziehn等人进行的二氧化碳(CO 2 )网络设计。 (2014年)也将甲烷(CH 4 )和一氧化二氮(N 2 O)通量估计的不确定性最小化,无论是单独使用还是使用多个目标。通过将最多五个新站点添加到基本网络中来生成最佳网络,该基本站点被定义为分别位于澳大利亚南部和北部的两个现有站点Cape Grim和Gunn Point。 CO 2 ,CH 4 和N 2 O的单个网络与组合观测网络显示出很大的相似性,因为每个温室气体的通量不确定性是以生物生产性土地的地区为主。与单独设计的网络相比,就减少磁通量不确定性而言,组合网络几乎没有损失。组合网络中站点的位置对跨位置的假定数据不确定性的变化很敏感。在考虑网络建设和维护成本的情况下,我们的网络设计方法已包括对经济成本的简单评估。我们的结果表明,虽然现场物流改变了最佳网络,但随着网络规模的扩大,通量不确定性的降低只有很小的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号