...
首页> 外文期刊>Geosciences >Time-Space Characterization of Wellbore-Cement Alteration by CO 2 -Rich Brine
【24h】

Time-Space Characterization of Wellbore-Cement Alteration by CO 2 -Rich Brine

机译:富含CO 2的盐水对井眼水泥蚀变的时空表征

获取原文

摘要

The risk of CO 2 leakage from damaged wellbore is identified as a critical issue for the feasibility and environmental acceptance of CO 2 underground storage. For instance, Portland cement can be altered if flow of CO 2 -rich water occurs in hydraulic discontinuities such as cement-tubing or cement-caprock interfaces. In this case, the raw cement matrix is altered by diffusion of the solutes. This fact leads to the formation of distinctive alteration fronts indicating the dissolution of portlandite, the formation of a carbonate-rich layer and the decalcification of the calcium silicate hydrate, controlled by the interplay between the reaction kinetics, the diffusion-controlled renewing of the reactants and products, and the changes in the diffusion properties caused by the changes in porosity induced by the dissolution and precipitation mechanisms. In principle, these mass transfers can be easily simulated using diffusion-reaction numerical models. However, the large uncertainties of the parameters characterizing the reaction rates (mainly the kinetic and thermodynamic coefficients and the evolving reactive surface area) and of the porosity-dependent diffusion properties prevent making reliable predictions required for risk assessment. In this paper, we present the results of a set of experiments consisting in the alteration of a holed disk of class-G cement in contact with a CO 2 -rich brine at reservoir conditions ( P = 12 MPa and T = 60 °C) for various durations. This new experimental protocol allows producing time-resolved data for both the spatially distributed mass transfers inside the cement body and the total mass transfers inferred from the boundary conditions mass balance. The experimental results are used to study the effect of the fluid salinity and the p CO 2 on the overall reaction efficiency. Experiments at high salinity triggers more portlandite dissolution, thinner carbonate layers, and larger alteration areas than those at low salinity. These features are accompanied with different spatial distribution of the alteration layers resulting from a complex interplay between salinity-controlled dissolution and precipitation mechanisms. Conversely, the effect of the p CO 2 is more intuitive: Increasing p CO 2 results in increasing the overall alteration rate without modifying the relative distribution of the reaction fronts.
机译:损坏的井筒泄漏CO 2的风险被认为是CO 2地下存储的可行性和环境可接受性的关键问题。例如,如果在诸如水泥管或水泥-岩石界面之类的水力不连续中发生富含CO 2的水流,则可以改变硅酸盐水泥。在这种情况下,未加工的水泥基质会因溶质的扩散而改变。这一事实导致了独特的蚀变前沿的形成,表明钙钛矿的溶解,富碳酸盐层的形成以及硅酸钙水合物的脱钙,这是由反应动力学之间的相互作用,扩散控制的反应物更新控制的。以及产品,以及由溶解和沉淀机理引起的孔隙率变化引起的扩散特性变化。原则上,可以使用扩散反应数值模型轻松模拟这些传质。但是,表征反应速率的参数(主要是动力学系数和热力学系数以及不断发展的反应表面积)以及与孔隙率相关的扩散特性的不确定性较大,因此无法进行可靠的风险评估预测。在本文中,我们介绍了一组实验的结果,这些实验包括在储层条件下(P = 12 MPa和T = 60°C)与富含CO 2的盐水接触的G级水泥开孔盘的变更不同的持续时间。这个新的实验方案可以为水泥体内空间分布的质量转移和边界条件质量平衡推断的总质量转移产生时间分辨的数据。实验结果用于研究流体盐度和p CO 2对总体反应效率的影响。高盐度的实验比低盐度的实验触发了更多的硅酸盐溶解,更薄的碳酸盐层和更大的蚀变区。这些特征伴随着蚀变层的不同空间分布,这是由盐度控制的溶解和沉淀机制之间复杂的相互作用所导致的。相反,p CO 2的效果更直观:增加p CO 2会增加总体变化速率,而不会改变反应前沿的相对分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号