...
首页> 外文期刊>Geoscientific Model Development Discussions >Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy
【24h】

Bayesian inference and predictive performance of soil respiration models in the presence of model discrepancy

机译:存在模型差异的土壤呼吸模型的贝叶斯推断和预测性能

获取原文
           

摘要

Bayesian inference of microbial soil respiration models is often based on the assumptions that the residuals are independent (i.e., no temporal or spatial correlation), identically distributed (i.e., Gaussian noise), and have constant variance (i.e., homoscedastic). In the presence of model discrepancy, as no model is perfect, this study shows that these assumptions are generally invalid in soil respiration modeling such that residuals have high temporal correlation, an increasing variance with increasing magnitude of COsub2/sub efflux, and non-Gaussian distribution. Relaxing these three assumptions stepwise results in eight data models. Data models are the basis of formulating likelihood functions of Bayesian inference. This study presents a systematic and comprehensive investigation of the impacts of data model selection on Bayesian inference and predictive performance. We use three mechanistic soil respiration models with different levels of model fidelity (i.e., model discrepancy) with respect to the number of carbon pools and the explicit representations of soil moisture controls on carbon degradation; therefore, we have different levels of model complexity with respect to the number of model parameters. The study shows that data models have substantial impacts on Bayesian inference and predictive performance of the soil respiration models such that the following points are true: (i)?the level of complexity of the best model is generally justified by the cross-validation results for different data models; (ii)?not accounting for heteroscedasticity and autocorrelation might not necessarily result in biased parameter estimates or predictions, but will definitely underestimate uncertainty; (iii)?using a non-Gaussian data model improves the parameter estimates and the predictive performance; and (iv)?accounting for autocorrelation only or joint inversion of correlation and heteroscedasticity can be problematic and requires special treatment. Although the conclusions of this study are empirical, the analysis may provide insights for selecting appropriate data models for soil respiration modeling.
机译:微生物土壤呼吸模型的贝叶斯推论通常基于以下假设:残差是独立的(即没有时间或空间相关性),分布均匀(即高斯噪声)并且具有恒定的方差(即高等方差)。在存在模型差异的情况下,因为没有模型是完美的,所以这项研究表明这些假设在土壤呼吸模型中通常无效,因此残差具有较高的时间相关性,且随CO 2 的增加而增加的方差外排和非高斯分布。逐步放宽这三个假设可得到八个数据模型。数据模型是制定贝叶斯推断似然函数的基础。这项研究对数据模型选择对贝叶斯推理和预测性能的影响进行了系统,全面的调查。对于碳库的数量和土壤水分控制对碳降解的明确表示,我们使用三种具有不同模型保真度(即模型差异)的机械土壤呼吸模型;因此,关于模型参数的数量,我们具有不同级别的模型复杂性。研究表明,数据模型对土壤呼吸模型的贝叶斯推论和预测性能具有重大影响,因此以下几点是正确的:(i)最佳模型的复杂程度通常通过以下方法的交叉验证结果来证明:不同的数据模型; (ii)不考虑异方差性和自相关性可能不一定会导致参数估计或预测有偏差,但肯定会低估不确定性; (iii)使用非高斯数据模型可改善参数估计和预测性能; (iv)仅考虑自相关或联合反转相关性和异方差可能会出现问题,需要进行特殊处理。尽管这项研究的结论是经验性的,但该分析可能会为选择土壤呼吸模型的适当数据模型提供见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号