...
首页> 外文期刊>Geoscientific Model Development Discussions >Calculating the turbulent fluxes in the atmospheric surface layer with neural networks
【24h】

Calculating the turbulent fluxes in the atmospheric surface layer with neural networks

机译:用神经网络计算大气表层的湍流

获取原文

摘要

The turbulent fluxes of momentum, heat and water vapour link the Earth's surface with the atmosphere. Therefore, the correct modelling of the flux interactions between these two systems with very different timescales is vital for climate and weather forecast models. Conventionally, these fluxes are modelled using Monin–Obukhov similarity theory (MOST) with stability functions derived from a small number of field experiments. This results in a range of formulations of these functions and thus also in differences in the flux calculations; furthermore, the underlying equations are non-linear and have to be solved iteratively at each time step of the model. In this study, we tried a different and more flexible approach, namely using an artificial neural network (ANN) to calculate the scaling quantities usub*/sub and θsub*/sub (used to parameterise the fluxes), thereby avoiding function fitting and iteration. The network was trained and validated with multi-year data sets from seven grassland, forest and wetland sites worldwide using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton backpropagation algorithm and six-fold cross validation. Extensive sensitivity tests showed that an ANN with six input variables and one hidden layer gave results comparable to (and in some cases even slightly better than) the standard method; moreover, this ANN performed considerably better than a multivariate linear regression model. Similar satisfying results were obtained when the ANN routine was implemented in a one-dimensional stand-alone land surface model (LSM), paving the way for implementation in three-dimensional climate models. In the case of the one-dimensional LSM, no CPU time was saved when using the ANN version, as the small time step of the standard version required only one iteration in most cases. This may be different in models with longer time steps, e.g. global climate models.
机译:动量,热和水蒸气的湍流将地球表面与大气联系起来。因此,这两个系统在不同时标之间的通量相互作用的正确建模对于气候和天气预报模型至关重要。通常,这些通量是使用莫宁-奥布霍夫相似性理论(MOST)建模的,其稳定性函数来自少量现场实验。这导致了这些功能的一系列公式化,因此也导致了通量计算的差异。此外,基础方程是非线性的,必须在模型的每个时间步迭代求解。在这项研究中,我们尝试了另一种更灵活的方法,即使用人工神经网络(ANN)计算缩放量u * 和θ * (用于参数化通量),从而避免函数拟合和迭代。使用Broyden-Fletcher-Goldfarb-Shanno(BFGS)拟牛顿反向传播算法和六重交叉验证,使用来自全球七个草地,森林和湿地站点的多年数据集对网络进行了训练和验证。广泛的灵敏度测试表明,具有6个输入变量和1个隐藏层的ANN给出的结果可与标准方法相比(在某些情况下甚至略好于标准方法);此外,该人工神经网络的性能明显优于多元线性回归模型。当在一维独立陆面模型(LSM)中实施ANN例程时,获得了相似的令人满意的结果,这为在三维气候模型中的实施铺平了道路。对于一维LSM,使用ANN版本时不会节省任何CPU时间,因为在大多数情况下,标准版本的时间步长很小,只需要进行一次迭代即可。这对于具有较长时间步长的模型可能会有所不同,例如全球气候模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号