...
首页> 外文期刊>Geoscience frontiers >Timescales of interface-coupled dissolution-precipitation reactions on carbonates
【24h】

Timescales of interface-coupled dissolution-precipitation reactions on carbonates

机译:碳酸盐上界面耦合溶解-沉淀反应的时间尺度

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In the Earth's upper crust, where aqueous fluids can circulate freely, most mineral transformations are controlled by the coupling between the dissolution of a mineral that releases chemical species into the fluid and precipitation of new minerals that contain some of the released species in their crystal structure, the coupled process being driven by a reduction of the total free-energy of the system. Such coupled dissolution-precipitation processes occur at the fluid-mineral interface where the chemical gradients are highest and heterogeneous nucleation can be promoted, therefore controlling the growth kinetics of the new minerals. Time-lapse nanoscale imaging using Atomic Force Microscopy (AFM) can monitor the whole coupled process underin situconditions and allow identifying the time scales involved and the controlling parameters. We have performed a series of experiments on carbonate minerals (calcite, siderite, dolomite and magnesite) where dissolution of the carbonate and precipitation of a new mineral was imaged and followed through time. In the presence of various species in the reacting fluid (e. g. antimony, selenium, arsenic, phosphate), the calcium released during calcite dissolution binds with these species to form new minerals that sequester these hazardous species in the form of a stable solid phase. For siderite, the coupling involves the release of Fe2+ions that subsequently become oxidized and then precipitate in the form of FeIIIoxyhydroxides. For dolomite and magnesite, dissolution in the presence of pure water (undersaturated with any possible phase) results in the immediate precipitation of hydrated Mg-carbonate phases. In all these systems, dissolution and precipitation are coupled and occur directly in a boundary layer at the carbonate surface. Scaling arguments demonstrate that the thickness of this boundary layer is controlled by the rate of carbonate dissolution, the equilibrium concentration of the precipitates and the kinetics of diffusion of species in a boundary layer. From these parameters a characteristic time scale and a characteristic length scale of the boundary layer can be derived. This boundary layer grows with time and never reaches a steady state thickness as long as dissolution of the carbonate is faster than precipitation of the new mineral. At ambient temperature, the surface reactions of these dissolving carbonates occur on time-scales of the order of seconds to minutes, indicating the rapid surface rearrangement of carbonates in the presence of aqueous fluids. As a consequence, many carbonate-fluid reactions in low temperature environments are controlled by local thermodynamic equilibria rather than by the global equilibrium in the whole system.
机译:在地壳的上层中,水流体可以自由地循环,大多数矿物的转化受将化学物质释放到流体中的矿物的溶解与新的矿物的沉淀之间的耦合控制,这些新矿物的晶体结构中包含一些被释放的物质,耦合过程是通过减少系统的总自由能来驱动的。这种耦合的溶解-沉淀过程发生在流体-矿物界面处,在该处化学梯度最高,可以促进非均相成核,因此控制了新矿物的生长动力学。使用原子力显微镜(AFM)的延时纳米成像可以在原位条件下监视整个耦合过程,并可以识别所涉及的时间尺度和控制参数。我们对碳酸盐矿物(方解石,菱铁矿,白云石和菱镁矿)进行了一系列实验,对碳酸盐的溶解和新矿物的沉淀进行了成像并随时间推移进行了成像。在反应流体中存在各种物质(例如锑,硒,砷,磷酸盐)时,在方解石溶解期间释放的钙与这些物质结合形成新的矿物质,其以稳定的固相形式隔离这些有害物质。对于菱铁矿,偶联涉及释放Fe2 +离子,该离子随后被氧化,然后以FeIII羟基氧化物的形式沉淀。对于白云石和菱镁矿,在纯水(任何相可能不饱和)存在下溶解会导致水合碳酸镁碳酸盐相立即沉淀。在所有这些系统中,溶解和沉淀是耦合的,并且直接发生在碳酸盐表面的边界层中。比例论证表明,该边界层的厚度受碳酸盐溶解速度,沉淀物的平衡浓度以及边界层中物质扩散动力学的控制。从这些参数可以得出边界层的特征时间尺度和特征长度尺度。只要碳酸盐的溶解快于新矿物的沉淀,该边界层就会随时间增长,并且永远不会达到稳态厚度。在环境温度下,这些可溶解碳酸盐的表面反应在数秒至数分钟的时间尺度上发生,这表明在存在水性流体的情况下碳酸盐的表面快速重排。结果,低温环境中的许多碳酸盐-流体反应是由局部热力学平衡控制的,而不是由整个系统的全局平衡控制的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号