首页> 外文期刊>Eukaryotic cell >Iron Starvation and Culture Age Activate Metacaspases and Programmed Cell Death in the Marine Diatom Thalassiosira pseudonana
【24h】

Iron Starvation and Culture Age Activate Metacaspases and Programmed Cell Death in the Marine Diatom Thalassiosira pseudonana

机译:铁饥饿和文化时代激活了海洋硅藻Thalassiosira pseudonana中的metacaspases和程序性细胞死亡。

获取原文
           

摘要

In the modern ocean, phytoplankton maintain extremely high primary production/biomass ratios, indicating that they bloom, die, and are replaced weekly. The molecular mechanisms regulating cellular mortality and turnover are largely unknown, even though they effectively short-circuit carbon export to the deep ocean and channel primary productivity to microbial food webs. Here, we present morphological, biochemical, and molecular evidence of caspase-mediated, autocatalytic programmed cell death (PCD) in the diatom Thalassiosira pseudonana in response to iron starvation. Transmission electron microscopy revealed internal degradation of nuclear, chloroplastic, and mitochondrial organelles, all while the plasma membranes remained intact. Cellular degradation was concomitant with dramatic decreases in photosynthetic efficiency, externalization of phosphatidylserine, and significantly elevated caspase-specific activity, with the addition of a broad-spectrum caspase inhibitor rescuing cells from death. A search of the T. pseudonana genome identified six distinct putative metacaspases containing a conserved caspase domain structure. Quantitative reverse transcription-PCR and Western blot analysis revealed differential gene and protein expression of T. pseudonana metacaspases, some of which correlated with physiological stress and caspase activity. Taken together with the recent discovery of the metacaspase-mediated viral infection of phytoplankton (K. D. Bidle, L. Haramaty, J. Barcelos-Ramos, and P. G. Falkowski, Proc. Natl. Acad. Sci. USA >104:6049-6054, 2007), our findings reveal a key role for metacaspases in the turnover of phytoplankton biomass in the oceans. Furthermore, given that Fe is required for photosynthetic electron transfer and is chronically limiting in a variety of oceanic systems, including high-nutrient low-chlorophyll regions, our findings provide a potential ecological context for PCD in these unicellular photoautotrophs.
机译:在现代海洋中,浮游植物维持着极高的初级生产力/生物量比,表明它们每天开花,死亡并被更换。尽管调节细胞死亡率和周转率的分子机制有效地缩短了向深海的碳输出并将初级生产力传递给微生物食物网的途径,但很大程度上尚不清楚。在这里,我们介绍了硅藻 Thalassiosira pseudonana 中对铁饥饿反应的半胱天冬酶介导的自催化程序性细胞死亡(PCD)的形态,生化和分子证据。透射电子显微镜显示核,叶绿体和线粒体细胞器的内部降解,而所有质膜均保持完整。细胞降解伴随着光合作用效率的急剧下降,磷脂酰丝氨酸的外在化和胱天蛋白酶特异性活性的显着提高,此外还加入了广谱的胱天蛋白酶抑制剂以使细胞死亡。搜索 T。假单胞菌基因组鉴定出六个不同的假定的半胱天冬酶,它们含有一个保守的胱天蛋白酶结构域结构。定量逆转录PCR和蛋白质印迹分析显示 T的差异基因和蛋白质表达。假单胞菌,其中一些与生理压力和半胱天冬酶活性有关。连同最近发现的半胱天冬酶介导的浮游植物病毒感染(KD Bidle,L。Haramaty,J。Barcelos-Ramos和PG Falkowski,Proc。Natl。Acad。Sci。USA > 104: 6049-6054,2007),我们的发现揭示了metacaspases在海洋浮游生物量转换中的关键作用。此外,鉴于铁是光合作用电子转移所必需的,并且在包括高营养低叶绿素在内的各种海洋系统中长期受到限制,我们的发现为这些单细胞自养生物中的PCD提供了潜在的生态环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号