首页> 外文期刊>EvoDevo >Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms
【24h】

Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms

机译:海参中胚胎骨骼生成间充质谱系的发展揭示了棘皮动物新结构进化的变化轨迹

获取原文
           

摘要

Background The mechanisms by which the conserved genetic “toolkit” for development generates phenotypic disparity across metazoans is poorly understood. Echinoderm larvae provide a great resource for understanding how developmental novelty arises. The sea urchin pluteus larva is dramatically different from basal echinoderm larval types, which include the auricularia-type larva of its sister taxon, the sea cucumbers, and the sea star bipinnaria larva. In particular, the pluteus has a mesodermally-derived larval skeleton that is not present in sea star larvae or any outgroup taxa. To understand the evolutionary origin of this structure, we examined the molecular development of mesoderm in the sea cucumber, Parastichopus parvimensis. Results By comparing gene expression in sea urchins, sea cucumbers and sea stars, we partially reconstructed the mesodermal regulatory state of the echinoderm ancestor. Surprisingly, we also identified expression of the transcription factor alx1 in a cryptic skeletogenic mesenchyme lineage in P. parvimensis. Orthologs of alx1 are expressed exclusively within the sea urchin skeletogenic mesenchyme, but are not expressed in the mesenchyme of the sea star, which suggests that alx1+ mesenchyme is a synapomorphy of at least sea urchins and sea cucumbers. Perturbation of Alx1 demonstrates that this protein is necessary for the formation of the sea cucumber spicule. Overexpression of the sea star alx1 ortholog in sea urchins is sufficient to induce additional skeleton, indicating that the Alx1 protein has not evolved a new function during the evolution of the larval skeleton. Conclusions The proposed echinoderm ancestral mesoderm state is highly conserved between the morphologically similar, but evolutionarily distant, auricularia and bipinnaria larvae. However, the auricularia, but not bipinnaria, also develops a simple skelotogenic cell lineage. Our data indicate that the first step in acquiring these novel cell fates was to re-specify the ancestral mesoderm into molecularly distinct territories. These new territories likely consisted of only a few cells with few regulatory differences from the ancestral state, thereby leaving the remaining mesoderm to retain its original function. The new territories were then free to take on a new fate. Partitioning of existing gene networks was a necessary pre-requisite to establish novelty in this system.
机译:背景保守的遗传“工具包”用于发展产生后生动物表型差异的机制了解甚少。棘皮动物的幼虫为理解发育新奇如何产生提供了巨大的资源。海胆直立幼虫与基底棘皮动物的幼虫有显着差异,其中包括其姊妹类的耳穴类幼虫,海参和海星双子叶幼虫。尤其是,排骨具有中胚层衍生的幼虫骨架,在海星幼虫或任何外群类群中不存在。为了了解这种结构的进化起源,我们研究了海参中成虫Parparastichopus parvimensis的中胚层分子发育。结果通过比较海胆,海参和海星中的基因表达,我们部分重建了棘皮动物祖先的中胚层调节状态。出人意料的是,我们还确定了P. parvimensis的一种隐秘的促骨骼生成的间充质谱系中转录因子alx1的表达。 alx1的直系同源物仅在海胆的骨骼生成间充质中表达,而在海星的间充质中不表达,这表明alx1 +的间质至少是海胆和海参的同形亚型。 Alx1的摄动表明该蛋白对于海参针的形成是必需的。海星alx1直系同源基因在海胆中的过表达足以诱导额外的骨架,这表明Alx1蛋白在幼虫骨架的进化过程中并未进化出新的功能。结论拟建的棘皮动物中胚层状态在形态相似但进化远离的耳廓和双子叶幼虫之间是高度保守的。然而,耳廓而不是双耳n也发展出一种简单的带骨架细胞谱系。我们的数据表明,获得这些新的细胞命运的第一步是将祖先中胚层重新指定为分子上不同的区域。这些新领地可能仅由几个细胞组成,与祖先状态之间的调节差异很小,从而使其余的中胚层得以保留其原始功能。然后,新领土可以自由承担新的命运。现有基因网络的分区是在该系统中建立新颖性的必要先决条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号