...
首页> 外文期刊>European Cells & Materials >Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds
【24h】

Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds

机译:用抗miR-31表达的骨髓基质干细胞和聚癸二酸甘油酯支架修复临界大小的骨缺损

获取原文

摘要

The repair of critical-sized defects (CSDs) is a significant challenge in bone tissue engineering. Combining the use of progenitor cells with gene therapy represents a promising approach for bone regeneration. MicroRNAs play important roles in most gene regulatory networks, regulate the endogenous expression of multiple growth factors and simultaneously modulate stem cell differentiation. Our previous study showed that knocking down miR-31 promotes the osteogenesis of bone marrow stromal stem cells (BMSCs). To investigate the therapeutic potential of cells engineered to express anti-miR-31 for CSD repair, lentiviral vectors encoding negative control, miR-31 precursor and anti-sense sequences were constructed and transduced into osteo-inductive BMSCs. The expression of osteogenic-specific genes, alkaline phosphatase activity and Alizarin Red S staining were investigated to evaluate the effects of miR-31 on the cell fate of BMSCs over a 3-week period. In addition, miR-31-modified BMSCs seeded on poly(glycerol sebacate) (PGS) scaffolds were used to repair 8 mm critical-sized calvarial defects in rats. The results showed that miR-31 suppression significantly increased the expression of osteogenic-specific genes in vitro at the mRNA and protein levels, and that robust new bone formation with high local bone mineral density was observed in the anti-miR groups in vivo. Moreover, the PGS scaffolds carrying anti-miR-31-expressing BMSCs exhibited good biocompatibility and a high regeneration rate (~60 %) within in vivo bone defects. Our results suggest that miR-31 gene delivery affects the potential of BMSCs for osteogenic differentiation and bone regeneration and that PGS is a potential substrate for genetically modified, tissue-engineered bone in the repair of large bone defects.
机译:临界尺寸缺损(CSD)的修复是骨组织工程中的重大挑战。将祖细胞的使用与基因疗法相结合代表了一种有希望的骨再生方法。 MicroRNA在大多数基因调控网络中发挥重要作用,调控多种生长因子的内源性表达,同时调节干细胞分化。我们以前的研究表明,敲低miR-31可以促进骨髓基质干细胞(BMSC)的成骨。为了研究工程化表达抗miR-31的细胞对CSD修复的治疗潜力,构建了编码阴性对照,miR-31前体和反义序列的慢病毒载体,并将其转导到骨诱导性BMSC中。研究成骨特异性基因的表达,碱性磷酸酶活性和茜素红S染色,以评估miR-31在3周内对BMSCs细胞命运的影响。此外,将miR-31修饰的BMSCs植入聚癸二酸甘油酯(PGS)支架上,用于修复大鼠8 mm临界大小的颅骨缺损。结果显示,miR-31抑制在体外在mRNA和蛋白质水平上显着增加了成骨特异性基因的表达,并且在体内的抗miR组中观察到了具有高局部骨矿物质密度的强健的新骨形成。此外,携带抗miR-31表达的BMSC的PGS支架在体内骨缺损中表现出良好的生物相容性和高再生率(〜60%)。我们的研究结果表明,miR-31基因的传递影响到BMSCs成骨分化和骨再生的潜力,而PGS是经过基因修饰的组织工程化骨修复大骨缺损的潜在底物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号