...
首页> 外文期刊>EURASIP journal on bioinformatics and systems biology >A novel cost function to estimate parameters of oscillatory biochemical systems
【24h】

A novel cost function to estimate parameters of oscillatory biochemical systems

机译:估计振荡生化系统参数的新型成本函数

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Oscillatory pathways are among the most important classes of biochemical systems with examples ranging from circadian rhythms and cell cycle maintenance. Mathematical modeling of these highly interconnected biochemical networks is needed to meet numerous objectives such as investigating, predicting and controlling the dynamics of these systems. Identifying the kinetic rate parameters is essential for fully modeling these and other biological processes. These kinetic parameters, however, are not usually available from measurements and most of them have to be estimated by parameter fitting techniques. One of the issues with estimating kinetic parameters in oscillatory systems is the irregularities in the least square (LS) cost function surface used to estimate these parameters, which is caused by the periodicity of the measurements. These irregularities result in numerous local minima, which limit the performance of even some of the most robust global optimization algorithms. We proposed a parameter estimation framework to address these issues that integrates temporal information with periodic information embedded in the measurements used to estimate these parameters. This periodic information is used to build a proposed cost function with better surface properties leading to fewer local minima and better performance of global optimization algorithms. We verified for three oscillatory biochemical systems that our proposed cost function results in an increased ability to estimate accurate kinetic parameters as compared to the traditional LS cost function. We combine this cost function with an improved noise removal approach that leverages periodic characteristics embedded in the measurements to effectively reduce noise. The results provide strong evidence on the efficacy of this noise removal approach over the previous commonly used wavelet hard-thresholding noise removal methods. This proposed optimization framework results in more accurate kinetic parameters that will eventually lead to biochemical models that are more precise, predictable, and controllable.
机译:振荡途径是生化系统中最重要的类别,其例子包括昼夜节律和细胞周期维持。需要对这些高度互连的生化网络进行数学建模,以实现许多目标,例如研究,预测和控制这些系统的动力学。识别动力学速率参数对于完全模拟这些和其他生物过程至关重要。但是,这些动力学参数通常无法从测量中获得,并且大多数动力学参数必须通过参数拟合技术进行估算。在振荡系统中估计动力学参数的问题之一是最小二乘(LS)成本函数表面中用于估计这些参数的不规则性,这是由测量的周期性引起的。这些不规则性导致许多局部最小值,甚至限制了某些最可靠的全局优化算法的性能。我们提出了一个参数估计框架来解决这些问题,该框架将时间信息与嵌入在用于估计这些参数的测量中的周期性信息相集成。该周期性信息用于构建具有更好表面特性的拟议成本函数,从而导致更少的局部最小值和更好的全局优化算法性能。我们验证了三个振荡生化系统,与传统的LS成本函数相比,我们提出的成本函数可提高估计精确动力学参数的能力。我们将此成本函数与改进的噪声去除方法结合在一起,该方法利用了测量中嵌入的周期性特征来有效降低噪声。结果提供了强有力的证据,证明了这种噪声消除方法相对于先前常用的小波硬阈值噪声消除方法的有效性。提出的优化框架可产生更精确的动力学参数,最终将导致生化模型更精确,可预测和可控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号