首页> 外文期刊>Entropy >Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions
【24h】

Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions

机译:超临界热力学条件下湍流圆形射流的热输运和熵产生机理

获取原文
           

摘要

In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1) the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing), (2) causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3) heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) approaches while numerically modeling supercritical fluid flows.
机译:在本文中,使用直接数值模拟研究了在超临界热力学条件下压缩氮气的湍流圆形射流中的热输运和熵产生机理。首先,研究了热传输及其对混合物形成的贡献以及热通量和温度标度的各向异性。其次,研究了在超临界流中演化的热流体过程中的熵产速率,以便确定不可逆性的原因,并显示有利的处理位置以及有利于混合的处理方式。因此,结果表明:(1)射流崩解过程包括超临界条件下的四个主要阶段(潜在核,分离,伪沸腾,湍流混合),(2)不可逆性的原因主要是由于热传递和热力学效应(3)即使在最小尺度上,热通量和温度尺度也表现出各向异性,这意味着各向异性热扩散率模型可能适用于雷诺平均Navier-Stokes(RANS)和大涡模拟( LES)方法,同时对超临界流体流动进行数值建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号