首页> 外文期刊>Environmental Skeptics and Critics >Can we trace biotic dispersals back in time? Introducing backward flow connectivity
【24h】

Can we trace biotic dispersals back in time? Introducing backward flow connectivity

机译:我们可以追溯生物扩散的时间吗?引入反向流连接

获取原文
       

摘要

Connectivity in ecology deals with the problem of how species dispersal will happen given actual landscape and species presence/absence over such landscape. Hence it can be considered a forward (ahead in time) scientific problem. I observe here that a backward theory of connectivity could be of deep interest as well: given the actual species presence/absence on the landscape, where with the highest probability such species is coming from? In other words, can we trace biotic dispersals back in time? Recently I have introduced a modelling and theoretical approach to ecological connectivity that is alternative to circuit theory and is able to fix the weak point of the “from-to” connectivity approach. The proposed approach holds also for mountain and hilly landscapes. In addition, it doesn’t assume any intention for a species to go from source points to sink ones, because the expected path for the species is determined locally (pixel by pixel) by landscape features. In this paper, I introduce a new theoretical and modelling approach called “backward flow connectivity”. While flow connectivity predicts future species dispersal by minimizing at each step the potential energy due to fictional gravity over a frictional landscape, backward flow connectivity does exactly the opposite, i.e. maximizes potential energy at each step sending back the species to higher levels of potential energy due to fictional gravity on the frictional landscape. Using backward flow connectivity, one has at hand a new tool to revert timeline of species dispersal, hence being able to trace backward biotic dispersals. With few modifications, the applications of backward flow connectivity can be countless, for instance tracing back-in-time not only plants and animals but also ancient human migrations and viral paths.
机译:生态学中的连通性解决了在实际景观和物种在该景观上存在/不存在的情况下物种如何扩散的问题。因此,可以认为它是一个向前的科学问题。在这里,我观察到反向连接性理论也可能引起广泛关注:考虑到实际物种在景观上的存在/不存在,这种物种最有可能来自何处?换句话说,我们能否及时追溯生物扩散?最近,我介绍了一种生态连通性的建模和理论方法,可以替代电路理论,并且能够解决“从头到尾”连通性方法的弱点。拟议的方法也适用于山区和丘陵景观。此外,因为物种的预期路径是由景观特征局部(逐像素)确定的,所以它并不打算将某个物种从源点转移到下沉点。在本文中,我介绍了一种称为“反向流连通性”的新理论和建模方法。流动连通性通过在每一步上最小化摩擦场上的虚构引力引起的势能来预测未来物种的扩散,而反向流动连通性则恰好相反,即在每一步中最大化势能,将物种返回到更高水平的势能。摩擦景观上的虚构引力。使用反向流动连通性,人们已经有了一种新的工具来恢复物种扩散的时间线,因此能够追踪反向生物扩散。只需进行很少的修改,反向流连接的应用就可以无数次,例如,不仅可以追溯到动植物,还可以追溯到远古的人类迁徙和病毒传播路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号