首页> 外文期刊>EPJ Nonlinear Biomedical Physics >Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization
【24h】

Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

机译:微管自组织的内在协同拓扑机制与协同拓扑矩阵

获取原文
       

摘要

Background In this body of work we investigate the synergistic-topological relationship during self-organization of the microtubule fiber in vitro , which is composed of straight, axially shifted and non-shifted, acentrosomal microtubules under crowded conditions. Methods We used electron microscopy to observe morphological details of ordered straight microtubules. This included the observation of the differences in length distribution between microtubules in ordered and non-ordered phases followed by the observation of the formation of interface gaps between axially shifted and ordered microtubules. We performed calculations to confirm that the principle of summation of pairwise electrostatic forces act between neighboring microtubules all their entire length. Results We have shown that the self-organization of a microtubule fiber imposes a variety of topological restrictions onto its constituting components: (a) tips of axially shifted neighboring microtubules are not in direct contact but rather create an ‘interface gap’ ; (b) fibers are always composed of a restricted number of microtubules at given solution conditions; (c) the average length of microtubules that constitute a fiber is always shorter than that of microtubules outside a fiber; (d) the length distribution of microtubules that constitute a fiber is narrower than that of microtubules outside a fiber and this effect is more pronounced at higher GTP-tubulin concentrations; (e) a cooperative motion of fiber microtubules due to actualization of the summation principle of pairwise electrostatic forces; (f) appearance of local GTP-tubulin depletion immediately in front of the tips of fiber microtubules. Conclusion Overall our data indicate that under crowded conditions in vitro , the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion , and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘ synergistic-topological matrix ’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis.
机译:背景技术在这项工作中,我们研究了微管纤维在体外自组织过程中的协同拓扑关系,该关系由拥挤条件下的笔直,轴向移位和非移位的人体小管组成。方法我们使用电子显微镜观察有序笔直微管的形态学细节。这包括观察有序和无序相中微管之间的长度分布差异,然后观察轴向移动和有序微管之间的界面间隙的形成。我们进行了计算,以确认成对静电力的求和原理在相邻的微管的整个长度之间起作用。结果我们已经表明,微管纤维的自组织对其构成成分施加了各种拓扑限制:(a)轴向移位的相邻微管的尖端不直接接触,而是形成“界面间隙”; (b)在给定的溶解条件下,纤维总是由数量有限的微管组成; (c)构成纤维的微管的平均长度总是比纤维外的微管的平均长度短; (d)构成纤维的微管的长度分布比纤维外的微管的长度分布窄,这种效应在较高的GTP-微管蛋白浓度下更为明显; (e)由于成对静电力的求和原理的实现,使纤维微管协同运动; (f)纤维微管尖端前立即出现局部GTP-微管蛋白消耗的现象。结论总的来说,我们的数据表明,在体外拥挤的条件下,微管纤维的自组织受固有的协同拓扑机制控制,该机制与拓扑变化,GTP-微管蛋白耗竭以及构成微管的纤维的协同运动相结合。可能会生成并维护“协同拓扑矩阵”。未能形成生物学上可行的微管协同拓扑矩阵的机制本身可能会导致肿瘤发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号